K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

A B C M 4cm H K

a)Ta có: tam giác ABC là tam giác cân

\(=>AB=AC\)

Mà \(AB=4cm\)

=>>AC=4cm

b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)

c) Xét tam giác ABM và tgiác ACM có

AB=AC(cmt)

AM: chung

==>>tgiác ABM=tgiác ACM( ch-cgv)

d) Ta có: tam giác ABM=tgiác ACM(cmt)

=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)

Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)

\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)

=> AMvuông góc vs BC

e) Xét tgiác BMH và tgiác CMK có :

BM=CM( 2 cạnh  tương ứng , cmt(a))

\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)

==>>>tgiác BMH=tgiác CMK(ch-gn)

=>MH=MK( 2 cạnh tương ứng)


 

#\(N\)

`a,` Xét Tam giác `AMB` và Tam giác `AMC` có:

`AM` chung

`AB = AC (g``t)`

\(\widehat{AMB}=\widehat{AMC}=90^0\)

`=>` Tam giác `AMB =` Tam giác `AMC (ch-cgv)`

`b,` Vì Tam giác `AMB = ` Tam giác `AMC (a)`

`=>` \(\widehat{B}=\widehat{C}\) `(2` góc tương ứng `)`

`=>` \(\widehat{BAM}=\widehat{CAM}\) `( 2` góc tương ứng `)`

`=> AM` là tia phân giác của \(\widehat{BAC}\)

`c,` Xét Tam giác `AHM` và Tam giác `AKM` có:

`AM` chung

\(\widehat{HAM}=\widehat{KAM}(CMT)\)

`=>` Tam giác `AHM =` Tam giác `AKM (ch-gn)`

`=> AH = AK (2` cạnh tương ứng `)`loading...

15 tháng 3 2017

K

Hình hơi xấu hì hì! tự viết GT KL nha!

Cm:

a) \(\Delta ABC\)cân tại A (gt)

=> AB=AC

=>AC=4cm (vì AB=4cm(gt))

Vậy AC=4cm.

b) \(\Delta ABC\)cân tại A (gt)

=>\(\widehat{B}=\widehat{C}\)

\(\Delta ABC\)có:\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(ĐL tổng 3 góc trong 1 tam giác)

\(\Rightarrow60^0+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{B}=\widehat{C}=60^0\)

=> \(\Delta ABC\)đều.

c) Xét \(\Delta ABM\)và \(\Delta ACM\)có:

AM chung

AB=AC

BM=CM

=>\(\Delta ABM\)=\(\Delta ACM\) (c.c.c)

                               (đpcm)

d) Vì \(\Delta ABM\)=\(\Delta ACM\)(cmt)

=>\(\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(2 góc kề bù)

=>\(\widehat{AMB}=\widehat{AMC}=90^0\)

=> \(AM⊥BC\)(Đpcm)

e)Xét \(\Delta BHM\)và \(\Delta CKM\)có:

\(\widehat{BHM}=\widehat{CKM}=90^0\)

BM=CM

\(\widehat{B}=\widehat{C}\)

=>\(\Delta BHM\)=\(\Delta CKM\)(cạnh huyền-góc nhọn)

=>MH=MK(2 cạnh t/ứ)

              (đpcm)

a:

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

b: Xét ΔABC có

AM là đường trung tuyến

AM là đường phân giác

Do đó: ΔABC cân tại A

Suy ra: \(\widehat{B}=\widehat{C}\)

16 tháng 1 2022

cop vừa

18 tháng 12 2017

AB = AC => ABC cân tại A
M trung điểm BC => AMB = AMC
=> MH chiều cao của AMB từ M
=> MK chiều cao của AMC từ M
=> MH = MK

13 tháng 1 2023

hình thì bạn tự vẽ nha !

a) xét ΔAMB và ΔAMC, ta có : 

AB = AC (gt)

MB = MC (vì M là trung điểm của cạnh BC)

AM là cạnh chung

⇒ ΔAMB = ΔAMC (c.c.c)

b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

⇒ AM vuông góc với BC

c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

xét ΔAHM và ΔAKM, ta có : 

AM là cạnh chung

\(\widehat{HAM}=\widehat{KAM}\) (cmt)

⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)

⇒ HA = KA (2 cạnh tương ứng)

HB không thể nào bằng AC được nha, có thể đề sai 

d) vì HA = KA nên ⇒ ΔHAK là tam giác cân

trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\)   (1)

trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\)    (2)

từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC

16 tháng 1 2023

A B C M GT ∆ABC(AB = AC) M là trung điểm của BC H MH∟AB tại H MK∟AC tại∟K KL a)∆AMB = ∆AMC b)AM∟BC c)HA = KA; HB = KC d)HK song song với BC K X X

Chứng minh:

a) Xét hai ∆AMB và ∆AMC có:

       AB = AC (GT)

       MB = MB (M là trung điểm của BC)

       AM là cạnh chung

Vậy ∆AMB = ∆AMC(c.c.c)

b) Có ∆AMB = ∆AMC(theo a)

⇒ Góc AMB = Góc AMC(2 góc tương ứng)

mà góc AMB + AMC = 180° (2 góc kề bù)

⇒ Góc AMB = Góc AMC = 90°

⇒ AM ∟ BC

c) ΔABC có:

       AB = AC(GT)

⇒ ΔABC cân tại A

⇒ Góc B = Góc C

Có MHAB tại H ⇒ Góc MHB = 90°

Có MKAC tại K ⇒ Góc MKC = 90°

Xét hai ΔBHM và ΔCKM có:

       Góc B = Góc C(ΔABC cân tại A)

       MB = MC(M là trung điểm của BC)

       Góc MHB = Góc MKC = 90°

Vậy ΔBHM = ΔCKM(g.c.g)

⇒ HB = KC(2 cạnh tương ứng)

Có HB + HA = AB

⇒ HA = AB - HB

Có KC + KA = AC

⇒ KA = AC - KC

mà AB = AC(GT)

       HB = KC(2 cạnh tương ứng)

⇒ HA = KA (2 cạnh tương ứng)

 

22 tháng 1 2019

a, xét tam giác MBH và tam giác MCK ta có: 

góc MHB= góc MKC=90 độ

BM=MC(gt)

góc B =góc C(gt)

vậy tam giác BMH = tam giác CMK(ch-gn)

22 tháng 1 2019

b, xét tam giác AMH và tam giác AMK có:

AM chung

MH=MK( do tam giác BMH= tam giác CMK)

góc AHM= góc AKM=90 độ

suy ra tam giác AMH= tam giác AMK( ch-cgv)

12 tháng 8 2015

A)do AM là tia phân giác của ^A

\(\Rightarrow\)MH=MK(tính chất tia phân giác)

b)theo bài ra M là trung điểm của BC nên AM vừa là phân giác vừa là trung tuyến của tam giác ABC

Suy ra \(\Delta ABC\)cân tại A\(\Leftrightarrow\)góc B =góc C