Khách
Khách

Hãy nhập câu hỏi của bạn vào đây

Akai Haruma
Akai Haruma Giáo viên
17 tháng 6 lúc 18:28

Lời giải:
TXĐ: $\mathbb{R}\setminus \left\{-1\right\}$

$y=\frac{x^2}{x^3+1}$

$y'=\frac{x(2-x^3)}{(x^3+1)^2}$

$y'=0\Leftrightarrow x=0$ hoặc $x=\sqrt[3]{2}$ (tm TXĐ) 

Lập bảng biến thiên với các mốc sau:

$-\infty;-1; 0; \sqrt[3]{2}; +\infty$ thì ta thu được:

Hàm nghịch biến trên $(-\infty; -1)\cup (-1;0)\cup (\sqrt[3]{2}; +\infty)$

Hàm đồng biến trên $(0;\sqrt[3]{2})$

Hàm có giá trị cực tiểu $y_{ct}=y(0)=0$ tại $x=0$

Hàm có giá trị cực đại $y_{cđ}=y(\sqrt[3]{2})=\frac{\sqrt[3]{4}}{3}$ tại $x=\sqrt[3]{2}$

17 tháng 6 lúc 9:06

Chị ko rõ cách vẽ em ạ

Nhưng em xem lại trong sách hoặc nhớ lại kiến thức thì chị hy vọng em sẽ làm được

\(HT\)

1
15 tháng 6 lúc 15:03

 

A B C D S H I K

a/

\(SH\perp\left(ABCD\right);CD\in\left(ABCD\right)\Rightarrow CD\perp SH\)

ABCD là HCN \(\Rightarrow CD\perp AD\)

\(\Rightarrow CD\perp\left(SAD\right)\)

\(\Rightarrow\widehat{CSD}\) là góc giữa SC với (SAD)

Ta có

\(SH\perp\left(ABCD\right);AD\in\left(ABCD\right)\Rightarrow SH\perp AD\)

Xét tg vuông SHD có

\(SD=\sqrt{SH^2+HD^2}\) Mà HD=AD-AH=3a-a=2a

\(\Rightarrow SD=\sqrt{8a^2+4a^2}=2a\sqrt{3}\)

Ta có

\(CD\perp\left(SAD\right);SD\in\left(SAD\right)\Rightarrow CD\perp SD\)

Xét tg vuông SCD có

\(\tan\widehat{CSD}=\dfrac{CD}{SD}=\dfrac{2a}{2a\sqrt{3}}=\dfrac{\sqrt{3}}{3}\Rightarrow\widehat{CSD}=30^o\)

b/

Ta có

\(SH\perp\left(ABCD\right);SH\in\left(SHB\right)\Rightarrow\left(SHB\right)\perp\left(ABCD\right)\)

\(SH\perp\left(ABCD\right);SH\in\left(SHI\right)\Rightarrow\left(SHI\right)\perp\left(ABCD\right)\)

Xét tg vuông ABH có

\(BH^2=AB^2+AH^2=4a^2+a^2=5a^2\)

Xét tg vuông DHI có

\(HI^2=HD^2+DI^2=4a^2+a^2=5a^2\)

Xét tg vuông BCI có

\(BI^2=BC^2+CI^2=9a^2+a^2=10a^2\)

Xét tg BHI có

\(BI^2=BH^2+HI^2=5a^2+5a^2=10a^2\)

=> tg BHI là tg vuông cân tại H

Ta có

\(SH\perp\left(ABCD\right);HI\in\left(ABCD\right)\Rightarrow HI\perp SH\)

\(HI\perp HB\left(cmt\right)\)

\(\Rightarrow HI\perp\left(SHB\right);HI\in\left(SHI\right)\Rightarrow\left(SHI\right)\perp\left(SHB\right)\)

c/

Ta có 

\(SH\perp\left(ABCD\right);BH\in\left(ABCD\right)\Rightarrow SH\perp HB\)

\(SH\perp\left(ABCD\right);HI\in\left(ABCD\right)\Rightarrow SH\perp HI\)

Xét tg vuông SHB có

\(SB=\sqrt{SH^2+BH^2}=\sqrt{8a^2+5a^2}=a\sqrt{13}\)

Xét tg vuông SHI có

\(SI=\sqrt{SH^2+HI^2}=\sqrt{8a^2+5a^2}=a\sqrt{13}\)

=> SB=SI => tg SBI cân tại S

Gọi K là trung điểm BI => \(SK\perp BI\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao)

c/m tương tự với tgBHI ta có \(HK\perp BI\)

\(\Rightarrow\widehat{SKH}\) là góc giữa (SBI) và (ABCD)

Xét tg vuông BHI có

\(HK=\dfrac{BI}{2}=\dfrac{a\sqrt{10}}{2}\) (trung tuyến thuộc cạnh huyền)

\(SH\perp\left(ABCD\right);HK\in\left(ABCD\right)\Rightarrow SH\perp HK\)

Xét tg vuông SKH có

\(\tan\widehat{SKH}=\dfrac{SH}{HK}=\dfrac{2a\sqrt{2}}{\dfrac{a\sqrt{10}}{2}}=\dfrac{4\sqrt{5}}{5}\)

còn câu d tôi bận làm sau nhé

 

 

13 tháng 6 lúc 19:40

Gọi d(S,(ABC))=h

Thể tích hình chóp \(V_{S.ABC}=\dfrac{1}{3}S_{ABC}h=\dfrac{1}{3}.\dfrac{1}{2}.2a.\dfrac{2\sqrt{3}a}{2}.h=a^3\)

\(\Rightarrow h=a\sqrt{3}\)

10 tháng 6 lúc 14:05

Bạn vào phần học bài , đi tiếp lớp 11, Vật lý , chương 7 , vào bài 29 : video thấu kính .

bạn coi cho kỹ, bài này nằm trong thấu kính. Nếu bạn giỏi toàn bộ  CÁC LOẠI thấu kính khi đi thi bạn sẽ giải được các thấu kính. Mình học chương này trúng phải " thầy "  ... sorry, nói xấu : không có cách tóm gọn ...mãi về sau mình bò 3. 4 tháng mới đứng lên được!

10 tháng 6 lúc 23:27

bài này nâng cao mà, công thức mình thuộc hết r

 

Minh Hồng
Minh Hồng Giáo viên
9 tháng 6 lúc 16:20

Bài 10

ĐKXĐ: \(\left\{{}\begin{matrix}cos\left(1-x\right)\ne0\\2sin2x.cos2x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}cos\left(1-x\right)\ne0\\sin4x\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ne\dfrac{\pi}{2}+k\pi\\4x\ne\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1-\dfrac{\pi}{2}-k\pi\\x\ne\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\left(k\in Z\right)\)

Bài 11.

ĐKXĐ: \(\left\{{}\begin{matrix}cos^2x-sin^2x\ne0\\sin2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}cos2x\ne0\\sin2x\ne0\end{matrix}\right.\)

\(\Leftrightarrow2x\ne\dfrac{k\pi}{4}\Leftrightarrow x\ne\dfrac{k\pi}{8}\)

Bài 12.

ĐKXĐ: \(\left\{{}\begin{matrix}1-2cos^2x\ne0\\1+tanx\ne0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}cos2x\ne0\\tanx\ne-1\\cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\ne\dfrac{\pi}{2}+k\pi\\x\ne-\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x\ne-\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\left(k\in Z\right)\)

10 tháng 6 lúc 15:49

Bài 10: 

ĐKXĐ của hàm số \(y=\dfrac{tan\left(1-x\right)+2}{2sin2xcos2x-1}\) là: 

\(\left\{{}\begin{matrix}1-x\ne\dfrac{\pi}{2}+k\pi\\2sin2xcos2x-1\ne0\end{matrix}\right.,k\inℤ\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1-\dfrac{\pi}{2}+k\pi\\sin4x\ne1\end{matrix}\right.,k\inℤ}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1-\dfrac{\pi}{2}+k\pi\\4x\ne\dfrac{\pi}{2}+k2\pi\end{matrix}\right.,k\inℤ\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1-\dfrac{\pi}{2}+k\pi\\x\ne\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.,k\inℤ\)