K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

a) Theo bất đẳng thức tam giác ta có

\(\Rightarrow\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\) (1)

Ta có \(a+b+c=2\)

\(\Rightarrow\left\{{}\begin{matrix}b+c=2-a\\a+b=2-c\\a+c=2-b\end{matrix}\right.\) (2)

Từ (1) và (2)

\(\Rightarrow\left\{{}\begin{matrix}a< 2-a\\b< 2-b\\c< 2-c\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2a< 2\\2b< 2\\2c< 2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a< 1\\b< 1\\c< 1\end{matrix}\right.\) ( đpcm )

b) Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\dfrac{2a}{2}\right)^2=a^2\)

Tượng tự ta có \(\left\{{}\begin{matrix}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{matrix}\right.\)

\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)

\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)+4\left(a^2+b^2+c^2\right)-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=\dfrac{2}{3}\)

13 tháng 4 2020

vì a;b;c là độ dài 3 cạnh của 1 tg

\(\Rightarrow\hept{\begin{cases}a+b>c\\a+c>b\\b+c>a\end{cases}\Rightarrow\hept{\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ca>a^2\end{cases}}}\)

\(\Rightarrow ab+bc+ac+ab+bc+ac>a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)              (1)

có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}a^2-2ab+b^2\ge0\\b^2-2bc+c^2\ge0\\c^2-2ac+a^2\ge0\end{cases}\Rightarrow}\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}}\)

\(\Rightarrow2ab+2bc+2ac\le2a^2+2b^2+2c^2\)

\(\Rightarrow ab+bc+ac\le a^2+b^2+c^2\)                     (2)

\(\left(1\right)\left(2\right)\Rightarrow ab+bc+ac\le a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)

9 tháng 5 2016

sách nâng cao phát triển , tìm phần bđt ấy

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

** Lần sau bạn lưu ý viết đề bằng công thức toán (hộp công thức nằm ở nút biểu tượng $\sum$ bên trái khung soạn thảo)

Lời giải:

a) Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:

$c< a+b\Rightarrow c^2< c(a+b)$

$b< a+c\Rightarrow b^2< b(a+c)$

$a<b+c\Rightarrow a^2< a(b+c)$

$\Rightarrow a^2+b^2+c^2< c(a+b)+b(a+c)+a(b+c)$

hay $a^2+b^2+c^2< 2(ab+bc+ac)$ (đpcm)

b) 

Áp dụng BĐT Bunhiacopxky:

$\text{VT}[a(b+c-a)+b(a+c-b)+c(a+b-c)]\geq (a+b+c)^2$

$\text{VT}[2(ab+bc+ac)-(a^2+b^2+c^2)]\geq (a+b+c)^2$

$\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}(*)$

Mà theo BĐT Cô-si:

$a^2+b^2+c^2\geq ab+bc+ac\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$. Do đó:

$2(ab+bc+ac)-(a^2+b^2+c^2)=(a+b+c)^2-2(a^2+b^2+c^2)$

$\leq (a+b+c)^2-2.\frac{(a+b+c)^2}{3}=\frac{(a+b+c)^2}{3}(**)$

Từ $(*); (**)\Rightarrow \text{VT}\geq 3$ (đpcm)

Dấu "=" xảy ra khi $x=y=z$

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Lời giải khác của câu b

Đặt $b+c-a=x; a+c-b=y; a+b-c=z$. Theo BĐT tam giác thì $x,y,z>0$

$\Rightarrow c=\frac{x+y}{2}; a=\frac{y+z}{2}; b=\frac{x+z}{2}$

Bài toán trở thành:

Cho $x,y,z>0$. CMR $\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3$
Thật vậy:

Áp dụng BĐT Cô-si:

 \(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{(x+y)(y+z)(x+z)}{8xyz}}\geq 3\sqrt[3]{\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{8xyz}}=3\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$

5 tháng 9 2023

Theo đề bài :

\(a\le b\le c\Rightarrow\left(a+b+c\right)^2\le\left(2b+c\right)^2\)

 Ta thấy \(\left(2b+c\right)^2-9bc\)

\(=4b^2+c^2+4bc-9bc\)

\(=4b^2+c^2-5bc\)

\(=4b^2-4bc+c^2-bc\)

\(=4b\left(b-c\right)-c\left(b-c\right)\)

\(\Rightarrow\left(2b+c\right)^2-9bc=\left(b-c\right)\left(4b-c\right)\left(1\right)\)

\(a\le b\le c\Rightarrow c< a+b\le2b< 4b\)

\(\Rightarrow\left\{{}\begin{matrix}4b-c>0\\b-c\le0\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\left(2b+c\right)^2-9bc=\left(b-c\right)\left(4b-c\right)\le0\)

\(\Rightarrow\left(2b+c\right)^2\le9bc\)

\(\Rightarrow\left(a+b+c\right)^2\le9bc\left(dpcm\right)\)

Nên sửa lại đề bài \(\left(a+b+c\right)^2\le9abc\rightarrow\left(a+b+c\right)^2\le9bc\), bạn xem lại đề bài nhé!

5 tháng 9 2023

 

cho a,b,c là 3 cạnh tam giác chứng minh (a+b+c)^2<=9abc với a<=b<=c mình ko  biết

 

15 tháng 9 2016

Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé

15 tháng 9 2016

bài 1 :

 Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2 
--> a + b + c = 2 

Trong 1 tam giác thì ta có: 
a < b + c 
--> a + a < a + b + c 
--> 2a < 2 
--> a < 1 

Tương tự ta có : b < 1, c < 1 

Suy ra: (1 - a)(1 - b)(1 - c) > 0 
⇔ (1 – b – a + ab)(1 – c) > 0 
⇔ 1 – c – b + bc – a + ac + ab – abc > 0 
⇔ 1 – (a + b + c) + ab + bc + ca > abc 

Nên abc < -1 + ab + bc + ca 
⇔ 2abc < -2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2 
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2 
⇔ a² + b² + c² + 2abc < 2 

--> đpcm 

29 tháng 1 2016

Kudo shinichi còn onl ko đó??

29 tháng 1 2016

Vô danh sách bạn bè là biết mà mokona

25 tháng 7 2023

Để chứng minh bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2, ta sẽ chứng minh từng phần.

Phần 1: Chứng minh 1 < a/b+c+b/c+a+c/a+b

Ta có:
a/b + b/c + c/a > 3√(a/b * b/c * c/a) = 3√(abc/(abc)) = 3

Vậy ta có: a/b + b/c + c/a + b/a + c/b + a/c > 3 + 1 + 1 = 5

Phần 2: Chứng minh a/b+c+b/c+a+c/a+b < 2

Ta có:
a/b + b/c + c/a < a/b + b/a + b/c + c/b = (a+b)/(b+c) + (b+c)/(a+b)

Áp dụng bất đẳng thức AM-GM, ta có:
(a+b)/(b+c) + (b+c)/(a+b) ≥ 2√[(a+b)/(b+c) * (b+c)/(a+b)] = 2

Do đó ta có: a/b+c+b/c+a+c/a+b < 2

Từ đó, ta suy ra bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2.

25 tháng 7 2023

Để chứng minh bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2, ta sẽ chứng minh từng phần.

Phần 1: Chứng minh 1 < a/b+c+b/c+a+c/a+b

Ta có:
a/b + b/c + c/a > 3√(a/b * b/c * c/a) = 3√(abc/(abc)) = 3

Vậy ta có: a/b + b/c + c/a + b/a + c/b + a/c > 3 + 1 + 1 = 5

Phần 2: Chứng minh a/b+c+b/c+a+c/a+b < 2

Ta có:
a/b + b/c + c/a < a/b + b/a + b/c + c/b = (a+b)/(b+c) + (b+c)/(a+b)

Áp dụng bất đẳng thức AM-GM, ta có:
(a+b)/(b+c) + (b+c)/(a+b) ≥ 2√[(a+b)/(b+c) * (b+c)/(a+b)] = 2

Do đó ta có: a/b+c+b/c+a+c/a+b < 2

Từ đó, ta suy ra bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2.

1:  tứ giác có 2 cạnh đốu ss và có 2 đg chéo= nhau làA:  hình thang cân B:  hbh C:  hcn D:  hình thôi2:  hình thang có 2 cạnh bên ss là?  3:  hbh có 1 góc vuông là ? 4:  hbh có 2 đg chéo vuông góc là? 5:  hcn có 1 đg chéo là đg phân giác cùa 1 góc là? 6:  trg tất cả các tứ giác đã học,  hình có 1 trục đối xứng là? 7:  nếu a và b đối xứng vs nhau qua td của đoạn thẳng MN thì A:  tg AMBN là hbh B:  M, N đối...
Đọc tiếp

1:  tứ giác có 2 cạnh đốu ss và có 2 đg chéo= nhau là

A:  hình thang cân B:  hbh C:  hcn D:  hình thôi

2:  hình thang có 2 cạnh bên ss là?  

3:  hbh có 1 góc vuông là ? 

4:  hbh có 2 đg chéo vuông góc là? 

5:  hcn có 1 đg chéo là đg phân giác cùa 1 góc là? 

6:  trg tất cả các tứ giác đã học,  hình có 1 trục đối xứng là? 

7:  nếu a và b đối xứng vs nhau qua td của đoạn thẳng MN thì 

A:  tg AMBN là hbh 

B:  M, N đối xứng vs nhau qua td A-B

C:  ÂM//BN,  AM = BN

D:  AB= MN

8:  chọn câu đúng trg các câu sau 

Hbh là:  

A:  hình thang có 2 gọc đối = nhau

B:  tg có 2 cạnh đối diện =

C:  tg có 2 đg chéo =

D:  tg có 2 cạnh đối diện //

9:  a)  tính các góc của tg ABCD biết số đo của chúng tương ứng tỉ lệ vs 2;2;1;1

b)  tg ABCD cho ở câu a là hình j?  Vì sao? 

10:  độ dài 2 đg chéo của hình thoi là 24cm và 32 cm.  Tính độ dài cạnh của hình thoi

Giúp mình nhà,  ai làm đúng hết mình tick cho 

0