K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2019

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x;y>0\right)\) (tự c/m ha)

\(\frac{7}{a}+\frac{5}{b}+\frac{4}{c}=\left(\frac{4}{a}+\frac{4}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{3}{a}+\frac{3}{c}\right)\)

                               \(=4\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+3\left(\frac{1}{a}+\frac{1}{c}\right)\)

                               \(\ge4.\frac{4}{a+b}+\frac{4}{b+c}+3.\frac{4}{a+c}=4\left(\frac{4}{a+b}+\frac{1}{b+c}+\frac{3}{c+a}\right)\)

Dấu "=" <=> a = b = c

9 tháng 6 2020

Ta có: \(\frac{a}{b}+1=\frac{a+b}{b}\)

*Cần c/m \(\frac{a+b}{b}\ge\frac{4a}{a+b},\forall a>0;b>0\) (*)

Thật vậy: (*)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow...\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b là số dương)

Tương tự ta cũng có: \(\frac{b}{c}+1=\frac{b+c}{c}\ge\frac{4b}{b+c}\); \(\frac{c}{a}+1=\frac{c+a}{a}\ge\frac{4c}{c+a}\)

Cộng theo vế ta được:

\(\left(\frac{a}{b}+1\right)+\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\ge\frac{4a}{a+b}+\frac{4b}{b+c}+\frac{4c}{c+a}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\ge4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)

11 tháng 4 2020

Ta có :  \(\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng ta có :

\(\frac{a}{b+c}=a.\frac{1}{b+c}\le a.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}\right)\)

Tương tự : 

\(\frac{b}{c+a}\le\frac{1}{4}\left(\frac{b}{c}+\frac{b}{a}\right)\)

\(\frac{c}{a+b}\le\frac{1}{4}\left(\frac{c}{a}+\frac{c}{b}\right)\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\le\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}\right)+\frac{1}{4}\left(\frac{b}{c}+\frac{b}{a}\right)+\frac{1}{4}\left(\frac{c}{a}+\frac{c}{b}\right)\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\le\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\right)\)

\(\Rightarrow4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le\frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\)

\(\Rightarrow4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le\frac{a+c}{b}+\frac{a+b}{c}+\frac{b+c}{a}\)

\(\Rightarrow4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Dấu = xảy ra khi a=b=c

12 tháng 4 2020

Áp dụng BĐT cô si ta có : 

\(\frac{b+c}{a}\ge4.\frac{a}{b+c}\)

\(\frac{c+a}{b}\ge\frac{4b}{c+a}\)

\(\frac{a+b}{c}\ge\frac{ac}{a+b}\)

\(\Rightarrow\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\ge4.\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

Dấu " = " xảy ra khi a=  b = c

16 tháng 4 2019

\(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\)

\(=\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

mà \(\frac{a}{b}+\frac{b}{a}\ge2\)(dễ chứng minh) 

chứng minh tương tự ta có

\(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\)\(\ge\)6

\(\left(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\right)^2\ge6^2=36\)(2)    (a>0; b>0; c>0)

tiếp theo chứng minh

\(36\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(18\ge2\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(18a^2+18b^2+18c^2\ge2ab+2bc+2ca\)

\(16\left(a^2+b^2+c^2\right)+\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(16\left(a^2+b^2+c^2\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)   (bất đẳng thức luôn đúng )

suy ra  bất đẳng thức

\(36\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)luôn đúng  (2)

từ (1) và (2) suy ra

\(\left(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\right)^2\ge\text{​​}\text{​​36}\ge\)\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

3 tháng 8 2017

a)

Đặt   \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(\Rightarrow A=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)

Áp dụng BĐT Schwarz , ta có :

\(A\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)  (1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{ab+bc+ac}\ge3\)     (2)

Từ (1) và (2) , suy ra :  \(A\ge\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

b)

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}=4\left(a+b+c\right)\)

4 tháng 8 2017

 tại sao lại dc cái này bạn

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}\)

6 tháng 12 2015

tự tìm đkxđ

\(\Leftrightarrow\left(4x^3-8x^2+4x\right)+\left(-17x^2+39x-22\right)+\left(x+\sqrt{3x-2}-\sqrt{3x-2}\right)=0\)

\(\Leftrightarrow4x.\left(x-1\right)^2+\left(x-1\right)\left(-17x+22\right)+\sqrt{3x-2}\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2-4x-17x+22+\sqrt{3x-2}\right)=0\)

\(\Leftrightarrow x=1\) tự chứng minh vế kia >=0 đi :D

19 tháng 2 2022

Từ bất đẳng thức Cô si ta có:

\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)

\(\Rightarrow\)Ta cần chứng minh:

\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.

21 tháng 2 2022

sai r bạn ơi ko biết còn đòi

23 tháng 9 2017

Đặt \(\left(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\right)\rightarrow\left(x;y;z\right)\) Khi đó ta có:

\(\left(x+y+z\right)^2+14xyz\ge4\)

Theo BĐT Nesbit \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\Rightarrow x+y+z\ge\frac{3}{2}\)

\(VT=\left(x+y+z\right)^2+14xyz=x^2+y^2+z^2+2\left(xy+yz+xz\right)+14xyz\)

\(=x^2+y^2+z^2+6xyz+2\left(xy+yz+xz\right)+8xyz\)

\(\ge x^2+y^2+z^2+\frac{9xyz}{x+y+z}+2\left(xy+yz+xz\right)+8xyz\)

\(\ge4\left(xy+yz+xz\right)+8xyz=4\)