K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2019

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x;y>0\right)\) (tự c/m ha)

\(\frac{7}{a}+\frac{5}{b}+\frac{4}{c}=\left(\frac{4}{a}+\frac{4}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{3}{a}+\frac{3}{c}\right)\)

                               \(=4\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+3\left(\frac{1}{a}+\frac{1}{c}\right)\)

                               \(\ge4.\frac{4}{a+b}+\frac{4}{b+c}+3.\frac{4}{a+c}=4\left(\frac{4}{a+b}+\frac{1}{b+c}+\frac{3}{c+a}\right)\)

Dấu "=" <=> a = b = c

9 tháng 6 2020

Ta có: \(\frac{a}{b}+1=\frac{a+b}{b}\)

*Cần c/m \(\frac{a+b}{b}\ge\frac{4a}{a+b},\forall a>0;b>0\) (*)

Thật vậy: (*)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow...\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b là số dương)

Tương tự ta cũng có: \(\frac{b}{c}+1=\frac{b+c}{c}\ge\frac{4b}{b+c}\); \(\frac{c}{a}+1=\frac{c+a}{a}\ge\frac{4c}{c+a}\)

Cộng theo vế ta được:

\(\left(\frac{a}{b}+1\right)+\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\ge\frac{4a}{a+b}+\frac{4b}{b+c}+\frac{4c}{c+a}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\ge4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)

11 tháng 4 2020

Ta có :  \(\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng ta có :

\(\frac{a}{b+c}=a.\frac{1}{b+c}\le a.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}\right)\)

Tương tự : 

\(\frac{b}{c+a}\le\frac{1}{4}\left(\frac{b}{c}+\frac{b}{a}\right)\)

\(\frac{c}{a+b}\le\frac{1}{4}\left(\frac{c}{a}+\frac{c}{b}\right)\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\le\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}\right)+\frac{1}{4}\left(\frac{b}{c}+\frac{b}{a}\right)+\frac{1}{4}\left(\frac{c}{a}+\frac{c}{b}\right)\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\le\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\right)\)

\(\Rightarrow4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le\frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\)

\(\Rightarrow4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le\frac{a+c}{b}+\frac{a+b}{c}+\frac{b+c}{a}\)

\(\Rightarrow4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Dấu = xảy ra khi a=b=c

12 tháng 4 2020

Áp dụng BĐT cô si ta có : 

\(\frac{b+c}{a}\ge4.\frac{a}{b+c}\)

\(\frac{c+a}{b}\ge\frac{4b}{c+a}\)

\(\frac{a+b}{c}\ge\frac{ac}{a+b}\)

\(\Rightarrow\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\ge4.\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

Dấu " = " xảy ra khi a=  b = c

6 tháng 12 2015

tự tìm đkxđ

\(\Leftrightarrow\left(4x^3-8x^2+4x\right)+\left(-17x^2+39x-22\right)+\left(x+\sqrt{3x-2}-\sqrt{3x-2}\right)=0\)

\(\Leftrightarrow4x.\left(x-1\right)^2+\left(x-1\right)\left(-17x+22\right)+\sqrt{3x-2}\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2-4x-17x+22+\sqrt{3x-2}\right)=0\)

\(\Leftrightarrow x=1\) tự chứng minh vế kia >=0 đi :D

23 tháng 9 2017

Đặt \(\left(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\right)\rightarrow\left(x;y;z\right)\) Khi đó ta có:

\(\left(x+y+z\right)^2+14xyz\ge4\)

Theo BĐT Nesbit \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\Rightarrow x+y+z\ge\frac{3}{2}\)

\(VT=\left(x+y+z\right)^2+14xyz=x^2+y^2+z^2+2\left(xy+yz+xz\right)+14xyz\)

\(=x^2+y^2+z^2+6xyz+2\left(xy+yz+xz\right)+8xyz\)

\(\ge x^2+y^2+z^2+\frac{9xyz}{x+y+z}+2\left(xy+yz+xz\right)+8xyz\)

\(\ge4\left(xy+yz+xz\right)+8xyz=4\)

25 tháng 3 2020

sai sai