K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(a^{2014}+\underbrace{1+1+....+1}_{1006}\geq 1007\sqrt[1007]{a^{2014}}=1007a^2\)

\(\Leftrightarrow a^{2014}+1006\geq 1007a^2\)

\(\Rightarrow a^{2014}+2013\geq 1007(a^2+1)\)

\(\Rightarrow \frac{a^{2014}+2013}{b^2+1}\geq \frac{1007(a^2+1)}{b^2+1}\). Hoàn toàn TT với các phân thức còn lại và cộng theo vế:

\(A\geq 1007\left(\frac{a^2+1}{b^2+1}+\frac{b^2+1}{c^2+1}+\frac{c^2+1}{a^2+1}\right)\)

\(\geq 1007.3\sqrt[3]{\frac{(a^2+1)(b^2+1)(c^2+1)}{(b^2+1)(c^2+1)(a^2+1)}}=3021\) (theo AM-GM)

Vậy \(A_{\min}=3021\Leftrightarrow a=b=c=1\)

31 tháng 10 2021

ĐKXĐ: \(a,b,c\ne0\)

\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2013.\dfrac{1}{2013}\)

\(\Leftrightarrow1+1+1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}=1\)

\(\Leftrightarrow\dfrac{a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc}{abc}=0\)

\(\Leftrightarrow a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc=0\)

\(\Leftrightarrow ac\left(a+b\right)+ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Mà \(a+b+c=2013\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2013\\b=2013\\c=2013\end{matrix}\right.\)(đpcm)

 

10 tháng 4 2017

Ta có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\)

\(=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)(1)

Lại có:

\(B\)\(=\dfrac{2013}{51}+\dfrac{2013}{52}+...+\dfrac{2013}{100}\)

\(=2013\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\right)\)(2)

Từ (1),(2)\(\Rightarrow\dfrac{B}{A}=2013\)

\(\Rightarrow\dfrac{B}{A}\) là số nguyên

17 tháng 12 2017

Ta có:

A\(=\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+....+\dfrac{1}{99\cdot100}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...\dfrac{1}{99}-\dfrac{1}{100}\)

=\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}...\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}...\dfrac{1}{100}\right)\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-2\cdot\left(\dfrac{1}{2}+\dfrac{1}{4}...+\dfrac{1}{100}\right)\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\)

=\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)

Và:

B=\(\dfrac{2013}{51}+\dfrac{2013}{52}+...+\dfrac{2013}{100}\)

=\(2013\cdot\left(\dfrac{1}{51}+\dfrac{1}{52}+...\dfrac{1}{100}\right)\)

\(\Rightarrow\dfrac{B}{A}=2013\)

Vậy\(\dfrac{B}{A}\)là một số nguyên

30 tháng 11 2017

ta có :\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(=>\dfrac{a^{2013}}{c^{2013}}=\dfrac{b^{2013}}{d^{2013}}=\dfrac{\left(a+b\right)^{2013}}{\left(c+b\right)^{2013}}\left(1\right)\)

Mặt khác:\(\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a^{2013}}{c^{2013}}=\dfrac{b^{2013}}{d^{2013}}=\dfrac{2.a^{2013}}{2.c^{2013}}=\dfrac{3.b^{2013}}{3.d^{2013}}=\dfrac{2.a^{2013}-3.b^{2013}}{2.c^{2013}-3.d^{2013}}\left(2\right)\)Từ (1),(2)=>\(\dfrac{\left(a+b\right)^{2013}}{\left(c+d\right)^{2013}}=\dfrac{2.a^{2013}-3.b^{2013}}{2.c^{2013}-3.d^{2013}}\left(đpcm\right)\)

30 tháng 11 2017

Cám ơn cậu nhiều nhé yeu

NV
18 tháng 2 2022

\(a^{2012}+b^{2012}+c^{2012}\ge3\sqrt[3]{\left(abc\right)^{2012}}=3\)

\(\Rightarrow\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\le\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge-\dfrac{1}{3}\)

Lại có:

\(a^{2013}+a^{2013}+...+a^{2013}\left(\text{2012 số hạng}\right)+1\ge2013\sqrt[2013]{\left(a^{2013}\right)^{2012}}=2013.a^{2012}\)

\(\Rightarrow2012.a^{2013}+1\ge2013.a^{2012}\)

Tương tự: \(2012.b^{2013}+1\ge2013.b^{2012}\) ; \(2012.c^{2013}+1\ge2013.c^{2012}\)

Cộng vế với vế:

\(\Rightarrow a^{2013}+b^{2013}+c^{2013}\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012}\)

\(\Rightarrow A\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012\left(a^{2012}+b^{2012}+c^{2012}\right)}=\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{3}=1\)

\(A_{min}=1\) khi \(a=b=c=1\)

8 tháng 12 2023

Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)

\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\) 

(vì \(2013=3.671=3\left(xy+yz+zx\right)\))

\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)

\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)

\(=\dfrac{1}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)

\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)

\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))

Vậy ta có đpcm.