Lê Song Phương

Giới thiệu về bản thân

Welcome to my house.
0
0
0
0
0
0
0
(Thường được cập nhật sau 1 giờ!)

Áp dụng BĐT Cô-si cho 3 số dương \(x^2,y^2,z^2\) , ta có:\(x^2+y^2+z^2\ge3\sqrt[3]{\left(xyz\right)^2}\)

\(\Leftrightarrow\left(xyz\right)^2\le\dfrac{\left(x^2+y^2+z^2\right)^3}{27}\) \(=\dfrac{1}{27}\)

\(\Leftrightarrow-\dfrac{1}{3\sqrt{3}}\le xyz\le\dfrac{1}{3\sqrt{3}}\)

 Vậy \(max_{xyz}=\dfrac{1}{3\sqrt{3}}\). Dấu "=" xảy ra khi \(x^2=y^2=z^2\) 

\(\Rightarrow\left(x,y,z\right)=\left(\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}}\right)\) hoặc \(\left(\dfrac{1}{\sqrt{3}},-\dfrac{1}{\sqrt{3}},-\dfrac{1}{\sqrt{3}}\right)\) và các hoán vị.

 

Hoặc bạn có thể đặt \(x^2+2x+2=t\)

Thì \(P=\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

\(P=\left(t-2\right)\left(t+2\right)+3\)

\(P=t^2-4+3\)

\(P=t^2-1\)

\(P=\left(t-1\right)\left(t+1\right)\)

\(P=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(P=\left(x+1\right)^2\left(x^2+2x+3\right)\)

Sửa lại đề 1 chút là thuận tay phải mới là trội hoàn toàn nhé.

Sơ đồ phả hệ:

 Kí hiệu alen thuận tay phải và gen thuận tay trái lần lượt là A và a. Gen nằm trên NST thường.

 Cặp bố mẹ (1), (2) sinh ra người con (5) thuận tay trái (có KG aa) nên kiểu gen của (1), (2) đều phải có 1 alen lặn a. Hơn nữa, cả cặp bố mẹ (1), (2) đều thuận tay phải nên cả 2 đều phải có KG là Aa.

 Thế thì người con (4) hoặc có KG AA hoặc Aa. KG của người vợ (3) chắc chắn là aa. Vì cặp vợ chồng (3), (4) sinh ra người con (7) có KG aa nên KG của người con trai (4) là Aa. Dẫn đến người con (8) phải có KG Aa.

 Cặp vợ chồng (5), (6) sinh ra người con (9) thuận tay phải nên người con (9) phải có KG Aa. Trong khi người chồng (6) có thể mang KG AA hoặc Aa.

 

Chỗ biến đổi này mình làm lại nhé:

Cần chứng minh: \(\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)

\(\Leftrightarrow TF.AB=2AF.TB\)

\(\Leftrightarrow\left(TA+AF\right)\left(AF+BF\right)=2AF\left(TA+AF+BF\right)\)

\(\Leftrightarrow TA.AF+TA.BF+AF^2+AF.BF=2TA.AF+2AF^2+2AF.BF\)

\(\Leftrightarrow TA.AF+AF^2+AF.FB=TA.BF\)

\(\Leftrightarrow AF\left(TA+AF+FB\right)=TA.BF\)

\(\Leftrightarrow AF.TB=TA.BF\)

\(\Leftrightarrow\dfrac{TA}{TB}=\dfrac{FA}{FB}\) (luôn đúng)

Vậy \(\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)

 Gọi T là giao điểm của DE và AB. Qua F kẻ đường thẳng song song với BC cắt DA, DT lần lượt tại U, V.

 Áp dụng định lý Menelaus cho tam giác ABC, cát tuyến TED, ta có:

 \(\dfrac{TA}{TB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)

 Áp dụng định lý Ceva cho tam giác ABC với AD, BE, CF đồng quy tại O, ta có:

 \(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)

Từ đó suy ra \(\dfrac{TA}{TB}=\dfrac{FA}{FB}\Leftrightarrow\dfrac{TA+FA}{TB}=\dfrac{2FA}{TB}\) \(\Leftrightarrow\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)

Mà theo định lý Thales:

 \(\dfrac{TF}{TB}=\dfrac{FV}{BD}\) và \(\dfrac{AF}{AB}=\dfrac{FU}{BD}\)

 Từ đó suy ra \(\dfrac{FV}{BD}=\dfrac{2FU}{BD}\) \(\Rightarrow FV=2FU\) hay U là trung điểm FV.

 Áp dụng bổ đề hình thang, ta dễ dàng suy ra O là trung điểm MN hay \(OM=ON\) (đpcm).

 (Bổ đề hình thang phát biểu như sau: Trung điểm của 2 cạnh đáy, giao điểm của 2 đường chéo và giao điểm của 2 đường thẳng chứa 2 cạnh bên của một hình thang thì thẳng hàng. Chứng minh khá dễ, mình nhường lại cho bạn tự tìm hiểu nhé.)

 

 Gọi J là trung điểm của SA. Ta thấy IJ//AD//BC nên J, I, B, C đồng phẳng \(\Rightarrow J\in\left(IBC\right)\).

 Ta có \(I=\left(IBC\right)\cap SA,B=\left(IBC\right)\cap SB,C=\left(IBC\right)\cap SC,\) \(J=\left(IBC\right)\cap SD\), suy ra tứ giác BCJI là thiết diện của hình chóp S.ABCD cắt bởi mặt (IBC)

 Mà BC//JI (cmt) nên BCJI là hình thang \(\Rightarrowđpcm\)

 

 Gọi E là giao điểm của CK và AB. Tam giác CDK vuông tại D có đường cao DI nên \(KD^2=KI.KC\)

 Mà \(KD=KA\) nên \(KA^2=KI.KC\) \(\Rightarrow\dfrac{KA}{KI}=\dfrac{KC}{KA}\) 

 Từ đó dễ dàng cm \(\Delta KAI~\Delta KCA\left(c.g.c\right)\)

 \(\Rightarrow\widehat{KIA}=\widehat{KAC}\)

Mà \(\widehat{KAC}=\widehat{KAE}\) (do AK là phân giác \(\widehat{BAC}\)) nên \(\widehat{KIA}=\widehat{KAE}\)

Từ đó suy ra \(\Delta EAK~\Delta EIA\left(g.g\right)\) \(\Rightarrow\widehat{EKA}=\widehat{EAI}\) hay \(\widehat{DKC}=\widehat{BAI}\).

 Hơn nữa, \(\widehat{DKC}=\widehat{IDC}\) (cùng phụ với \(\widehat{DCK}\)) nên \(\widehat{IDC}=\widehat{BAI}\)

 \(\Rightarrow\) Tứ giác IABD nội tiếp (góc ngoài bằng góc trong đối diện)

 \(\Rightarrow\widehat{AIB}=\widehat{ADB}\).

 Mà \(\widehat{ADB}=90^o\Rightarrow\widehat{AIB}=90^o\) (đpcm)

Vì a không chia hết cho 3 nên \(a=3k+1\) hoặc \(a=3k+2\) với \(k\inℕ\)

Nếu \(a=3k+1\) thì \(a^2-1=\left(3k+1\right)^2-1=9k^2+6k⋮3\)

Nếu \(a=3k+2\) thì \(a^2-1=\left(3k+2\right)^2-1=9k^2+12k+3⋮3\)

Vậy ta có đpcm.

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.