K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

vì a b c >= 0\(\Rightarrow B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}>=\frac{9}{3+a+b+c}\)(bđt cosi) dấu = xảy ra khi 1+a=1+b=1+c suy ra a=b=c

B nhỏ nhất là \(\frac{9}{3+a+b+c}\)để số này nhỏ nhất  khi 3 +a+b+c lớn nhất và a+b+c lớn nhất suy ra a+b+c lớn nhất là 3và suy ra a=b=c=3/3=1

\(\Rightarrow B=\frac{9}{3+a+b+c}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)

vậy B min là 3/2 khi a=b=c=1

17 tháng 5 2018

Vì \(a,b,c\ge0\)Nên ta nhân a+b+c vào hai vế của bất đẳng thức :

Ta được:\(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)

\(\Leftrightarrow\frac{a}{a}+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{b}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+\frac{c}{c}\ge9\)

\(\Leftrightarrow3+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)-9\ge0\)(2)

Lại có \(ab\ge0\)

\(\Rightarrow\frac{\left(a-b\right)^2}{ab}\ge0\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\) 

Tương tự:\(\frac{c}{a}+\frac{a}{c}\ge2;\frac{b}{c}+\frac{c}{b}\ge2\)(1)

Từ (1),(2),(3) \(\Rightarrow3+2+2+2-9\ge0\)(luôn đúng)

Vậy..........................................................................................

Dấu "=" <=> a=b=c

Nếu như tớ làm đúng thì bạn k cho tớ với nhé!!!!!!!!!!!!!!!!!!

Thanks bạn trước! 

17 tháng 5 2018

Áp dụng bất đẳng thức Cauchy - Schwarz dạng engel , ta có 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

Đẳng thức xảy ra <=> a = b = c 

NV
16 tháng 3 2019

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

Ta có: \(A=\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\)

\(\Leftrightarrow A+4=\frac{a-d}{d+b}+1+\frac{d-b}{b+c}+1+\frac{b-c}{c+a}+1+\frac{c-a}{a+d}+1\)

\(\Leftrightarrow A+4=\frac{a+b}{d+b}+\frac{d+c}{b+c}+\frac{b+a}{c+a}+\frac{c+d}{a+d}\)

\(\Leftrightarrow A+4=\left(a+b\right)\left(\frac{1}{d+b}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{xy}\)với mọi x,y>0 

Ta có: \(A+4\ge\frac{4\left(a+b\right)}{a+b+c+d}+\frac{4\left(d+c\right)}{a+b+c+d}\)

\(A+4\ge\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

\(A\ge0\)(dpcm)

2 tháng 6 2020

BĐT tương đương : \(\frac{a\left(a+c+b-3b\right)}{1+ab}+\frac{b\left(b+a+c-3c\right)}{a+bc}+\frac{c\left(c+b+a-3a\right)}{1+ca}\ge0\)

\(\Leftrightarrow\frac{3a\left(1-b\right)}{1+ab}+\frac{3b\left(1-c\right)}{1+bc}+\frac{3c\left(1-a\right)}{1+ca}\ge0\)

\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+\frac{b\left(1-c\right)}{1+bc}+\frac{c\left(1-a\right)}{1+ca}\ge0\)

\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+1+\frac{b\left(1-c\right)}{1+bc}+1+\frac{c\left(1-a\right)}{1+ca}\ge3\)

\(\Leftrightarrow\frac{a+1}{1+ab}+\frac{b+1}{1+bc}+\frac{c+1}{1+ca}\ge3\)

Áp dụng BĐT Cosi ta có: \(\frac{a+1}{1+ab}+\frac{b+1}{1+bc}+\frac{c+1}{1+ca}\ge3\sqrt[3]{\frac{a+1}{1+ab}\cdot\frac{b+1}{1+bc}\cdot\frac{c+1}{1+ca}}\)

Ta phải chứng minh: \(\sqrt[3]{\frac{a+1}{1+ab}\cdot\frac{b+1}{1+bc}\cdot\frac{c+1}{1+ca}}\ge1\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)\)

Thật vậy \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1\ge a^2b^2c^2+abc\left(a+b+c\right)+ab+bc+ca+1\)

\(\Leftrightarrow3\ge a^2b^2c^2+2abc\) (*)

Từ a+b+c=3 => \(3\ge3\sqrt[3]{abc}\Leftrightarrow abc\le1\)

=> (*) đúng

Vậy \(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ca}\ge0\)

Đẳng thức xảy ra <=> a=b=c=1

5 tháng 6 2020

đay nha

7 tháng 3 2018

Tịnh tách các bài ra nhé.

21 tháng 7 2016

2) a) Không mất tính tổng quát, ta giả sử \(a\ge b\ge c>0\).Suy ra \(a+b\ge a+c\ge b+c\)

Ta có  : \(\frac{b}{c+a}< \frac{b}{b+c}\)\(\frac{c}{a+b}< \frac{c}{b+c}\)\(\frac{a}{b+c}< 1\)

\(\Rightarrow\frac{b}{c+a}+\frac{c}{a+b}+\frac{a}{b+c}< \frac{b+c}{b+c}+1=2\)

b) Đặt \(x=b+c-a\)\(y=c+a-b\)\(z=a+b-c\);

Khi đó : \(2a=y+z\Rightarrow a=\frac{y+z}{2}\)\(b=\frac{x+z}{2}\)\(c=\frac{x+y}{2}\)

\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\)

Mặt khác ta có : \(\frac{x}{y}+\frac{y}{x}\ge2\)\(\frac{y}{z}+\frac{z}{y}\ge2\)\(\frac{x}{z}+\frac{z}{x}\ge2\)

\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}\ge\frac{1}{2}\left(2+2+2\right)\)

hay \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)(đpcm)

NV
23 tháng 9 2019

a/ \(2x^2-3x+1>0\Rightarrow\left[{}\begin{matrix}x>1\\x< \frac{1}{2}\end{matrix}\right.\)

b/ \(-3x^2+2x+1< 0\Rightarrow-\frac{1}{3}< x< 1\)

c/ \(\frac{x+3}{x-2}\ge0\Rightarrow\left[{}\begin{matrix}x>2\\x\le-3\end{matrix}\right.\)

d/ \(\frac{2x+1}{x+2}\ge1\Leftrightarrow\frac{2x+1}{x+2}-1\ge0\Leftrightarrow\frac{x-1}{x+2}\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x< -2\end{matrix}\right.\)

e/ \(\frac{\sqrt{x}+3}{2-\sqrt{x}}\le0\Rightarrow\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}< 0\end{matrix}\right.\) \(\Rightarrow x>4\)

g/\(\frac{\sqrt{x}-3}{\sqrt{x}-2}\ge0\Rightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x\ge9\\x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.\)

h/ \(\frac{\sqrt{x}-3}{\sqrt{x}-1}-\frac{1}{3}< 0\Rightarrow\frac{2\left(\sqrt{x}-4\right)}{3\left(\sqrt{x}-1\right)}< 0\Rightarrow1< x< 16\)