K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

A=\(\left(a+b\right)\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)

= \(\dfrac{a}{a}+\dfrac{b}{b}+\dfrac{a}{b}+\dfrac{b}{a}\)

= \(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)

Áp dụng BĐT cô si cho 2 số ta có

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

\(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge4\)

⇔ A ≥4

=> Min A =4

dấu "=" xảy ra khi

\(\dfrac{a}{b}=\dfrac{b}{a}\)

⇔a2=b2

⇔a=b

vậy Min A =4 khi a=b

11 tháng 3 2018

b,c tương tự Nguyễn Thiện Minh

NV
5 tháng 4 2022

1.

BĐT cần chứng minh tương đương:

\(\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)

Ta có:

\(\left(ab-1\right)^2=a^2b^2-2ab+1=a^2b^2-a^2-b^2+1+a^2+b^2-2ab\)

\(=\left(a^2-1\right)\left(b^2-1\right)+\left(a-b\right)^2\ge\left(a^2-1\right)\left(b^2-1\right)\)

Tương tự: \(\left(bc-1\right)^2\ge\left(b^2-1\right)\left(c^2-1\right)\)

\(\left(ca-1\right)^2\ge\left(c^2-1\right)\left(a^2-1\right)\)

Do \(a;b;c\ge1\)  nên 2 vế của các BĐT trên đều không âm, nhân vế với vế:

\(\left[\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\right]^2\ge\left[\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\right]^2\)

\(\Rightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Câu 2 em kiểm tra lại đề có chính xác chưa

NV
5 tháng 4 2022

2.

Câu 2 đề thế này cũng làm được nhưng khá xấu, mình nghĩ là không thể chứng minh bằng Cauchy-Schwaz được, phải chứng minh bằng SOS

Không mất tính tổng quát, giả sử \(c=max\left\{a;b;c\right\}\)

\(\Rightarrow\left(c-a\right)\left(c-b\right)\ge0\) (1)

BĐT cần chứng minh tương đương:

\(\dfrac{1}{a}-\dfrac{a+b}{bc+a^2}+\dfrac{1}{b}-\dfrac{b+c}{ac+b^2}+\dfrac{1}{c}-\dfrac{c+a}{ab+c^2}\ge0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)+a\left(c-b\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow c\left(b-a\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{b^3+abc}\right)+a\left(c-b\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{c^3+abc}\right)\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)\left(b^3-a^3\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c^3-a^3\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)^2\left(a^2+ab+b^2\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c-a\right)\left(a^2+ac+c^2\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

Đúng theo (1)

Dấu "=" xảy ra khi \(a=b=c\)

NV
28 tháng 2 2021

\(\dfrac{1}{\left(1+\sqrt{ab}\sqrt{\dfrac{a}{b}}\right)^2}+\dfrac{1}{\left(1+\sqrt{ab}\sqrt{\dfrac{b}{a}}\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}=\dfrac{1}{1+ab}\)

Tương tự: \(\dfrac{1}{\left(1+c\right)^2}+\dfrac{1}{\left(1+d\right)^2}\ge\dfrac{1}{1+cd}\)

\(\Rightarrow B\ge\dfrac{1}{1+ab}+\dfrac{1}{1+cd}=\dfrac{1}{1+ab}+\dfrac{1}{1+\dfrac{1}{ab}}=\dfrac{1}{1+ab}+\dfrac{ab}{1+ab}=1\)

\(B_{min}=1\) khi \(a=b=c=d=1\)

28 tháng 2 2021

Áp dụng BĐT phụ ta có:

\(B\ge\dfrac{1}{1+ab}+\dfrac{1}{1+cd}=\dfrac{ab+cd+2}{1+ab+cd+abcd}=1\)

Vậy GTNN của B bằng 1 <=> a=b=c=d=1

24 tháng 6 2017

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)

\(\Leftrightarrow\dfrac{a+b}{a}\times\dfrac{b+c}{b}\times\dfrac{a+c}{c}=8\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\)

~*~*~*~*~

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)

\(=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\) (1)

\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{b}{b+c}-\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{c}{c+a}-\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{a+b}\left(1-\dfrac{b}{b+c}\right)+\dfrac{b}{b+c}\left(1-\dfrac{c}{c+a}\right)+\dfrac{c}{a+c}\left(1-\dfrac{a}{a+b}\right)\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{a+b}\times\dfrac{c}{b+c}+\dfrac{b}{b+c}\times\dfrac{a}{a+c}+\dfrac{c}{a+c}\times\dfrac{b}{a+b}\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}=\dfrac{3}{4}\)

\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)=\dfrac{3}{4}\times8abc\)

\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)+2abc=8abc\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\) luôn đúng

=> (1) đúng

24 tháng 6 2017

Bạn cũng có thể giải bằng cách đặt \(x=\dfrac{a}{a+b};y=\dfrac{b}{b+c};z=\dfrac{c}{a+c}\).

23 tháng 12 2018

1)\(\dfrac{c-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}+\dfrac{a-c}{\left(b-a\right)\left(b-c\right)\left(a-c\right)}+\dfrac{b-a}{\left(b-a\right)\left(c-b\right)\left(c-a\right)}=\dfrac{c-b+a-c+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

17 tháng 4 2022

a.

Giả sử: \(\dfrac{a^2+b^2}{2}\ge ab\) ( đúng )

\(\Leftrightarrow a^2+b^2\ge2ab\) 

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )

Vậy \(\dfrac{a^2+b^2}{2}\ge ab\)

 

 

17 tháng 4 2022

b.Giả sử: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) ( đúng )

\(\Leftrightarrow\left(a+b\right)\left(\dfrac{a+b}{ab}\right)\ge4\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{ab}\ge4\)

\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Vậy \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

 

7 tháng 12 2023

Ta có: \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)\(=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

=> a+b=2c; b+c=2a; c+a=2b

Thay vào A ta được: A=((a+b)/b)((c+b)/c)((a+c)/a)

=2c/b.2a/c.2b/a=2.2.2=8

17 tháng 12 2023

Ta có \(\dfrac{1}{a^3\left(b+c\right)}=\dfrac{1}{\dfrac{1}{b^3c^3}\left(b+c\right)}=\dfrac{b^2c^2}{\dfrac{1}{b}+\dfrac{1}{c}}\)

Tương tự \(\Rightarrow VT=\dfrac{b^2c^2}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{c^2a^2}{\dfrac{1}{c}+\dfrac{1}{a}}+\dfrac{a^2b^2}{\dfrac{1}{a}+\dfrac{1}{b}}\)

\(\ge\dfrac{\left(ab+bc+ca\right)^2}{2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)}\) (BĐT B.C.S)

\(=\dfrac{\left(ab+bc+ca\right)^2}{2\left(\dfrac{ab+bc+ca}{abc}\right)}\)

\(=\dfrac{ab+bc+ca}{2}\) (do \(abc=1\))

\(\ge\dfrac{3\sqrt[3]{abbcca}}{2}\)

\(=\dfrac{3\left(\sqrt[3]{abc}\right)^2}{2}=\dfrac{3}{2}\) (do \(abc=1\))

ĐTXR \(\Leftrightarrow a=b=c=1\)

23 tháng 9 2017

a)Theo bất đẳng thức cauchy:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{4}{a+b}.\left(a+b\right)\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

Dấu "=" xảy ra khi: \(a=b\)

Ta có điều phải chứng minh

b)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge\dfrac{9}{a+b+c}.\left(a+b+c\right)\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge9\)

Dấu "=" xảy ra khi:

\(a=b=c\)

Ta có điều phải chứng minh