K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

\(\frac{20102011}{2012}=9991+\frac{119}{2012}=9991+\frac{1}{\frac{2012}{119}}=9991+\frac{1}{16+\frac{108}{119}}=9991+\frac{1}{16+\frac{1}{\frac{119}{108}}}\)

\(=9991+\frac{1}{16+\frac{1}{1+\frac{11}{108}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{\frac{108}{11}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{9}{11}}}}\)

=\(=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{\frac{11}{9}}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{2}{9}}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{1}{4+\frac{1}{2}}}}}}\)

14 tháng 11 2018

Nguyễn Thị Linh Chi có thể hướng dẫn cho mình cụ thể chút nữa được không.

Làm sao để \(\frac{20102011}{2012}\)=9991+\(\frac{119}{2012}\)vậy bạn?

(giúp mik nhé, mik cảm ơn nha!)

20 tháng 2 2018

a) Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có: 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(p=\frac{a+b+c}{2}\right)\)

Tương tự rồi cộng theo vế:

\(2VT\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=2VP\Leftrightarrow VT\ge VP\)

Dấu "=" khi \(a=b=c\)

b)sai đề

9 tháng 5 2017

Câu 2/

\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)

Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)

Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.

PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.

9 tháng 5 2017

tks bn nhé, bn giúp mk câu 1 được ko

7 tháng 4 2020

Áp dụng BĐT Cauchy ta có: \(\frac{1}{a^2+1}=\frac{\left(a^2+1\right)-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)

Hoàn toàn tương tự ta được

\(\frac{1}{b^2+1}\ge1-\frac{b}{2};\frac{1}{c^2+1}\ge1-\frac{c}{2};\frac{1}{d^2+1}\ge1-\frac{d}{2}\)

Cộng theo vế của từng BĐT trên ta được

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1\ge2}\)

Dấu "=" xảy ra khi a=b=c=d=1

Nguồn: Nguyễn Thị Thúy

7 tháng 4 2020
QUỲNH
30 tháng 4 2019

Đường link : Câu hỏi của Hà Lê - Toán lớp 9 - Học toán với OnlineMath

30 tháng 4 2019

Ta có : a4 + b4 \(\ge\)2a2b2 ; b4 + c4 \(\ge\)2b2c2 ; a4 + c4 \(\ge\)2a2c2

\(\Rightarrow\)a4 + b4 + c4 \(\ge\)a2b2 + b2c2 + a2c2 ( 1 )

Lại có : a2b2 + b2c2 \(\ge\)2b2ac ; b2c2 + a2c2 \(\ge\)2c2ab ; a2b2 + a2c2 \(\ge\)2a2bc

\(\Rightarrow\)a2b2 + b2c2 + a2c2 \(\ge\)abc ( a + b + c ) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a4 + b4 + c4 \(\ge\) abc ( a + b + c ) 

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

Tương tự , b4 + c4 + d4 ​​​\(\ge\)​bcd ( b + c + d ) ; a4 + b4 + d4 ​\(\ge\)​abd ( a + b + d ) ; c4 + d4 + a4 ​\(\ge\)​acd ( a + c + d ) 

\(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)

\(\frac{1}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\)\(\frac{1}{a^4+b^4+d^4+abcd}\le\frac{c}{a+b+c+d}\)

\(\frac{1}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)

Cộng từng vế theo vế , ta được : 

\(\le\)1  ( đặt A = biểu thức ấy nhé )

Vậy GTLN A = 1 \(\Leftrightarrow\)a = b = c = d = 1

9 tháng 1 2020

áp dụng bất đẳng thức Cauchy-schwaz

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}\)=\(\frac{16}{a+b+c+d}\)(đpcm)

1 tháng 4 2020

\({ x^3\over x^4-1 }={{ a(x+1)+b(x-1)}\over{x^2-1}} +{{cx+d}\over{x^2+1}}\)=\({(ax+a+bx-b)(x^2 +1) +(cx+d) (x^2-1)}\over{x^4-1}\) =\({ax^3 +ax^2+bx^3-bx^2+ax+a+bx-b +cx^3 +dx^2-cx-d}\over{x^4-1} \) Suy ra \(x^3=ax^3 +ax^2+bx^3-bx^2+ax+a+bx-b +cx^3 +dx^2-cx-d \) \(= x^3(a+b+c)+x^2(a-b+d)+x(a+b-c)+(a-b-d)\) Điều này chỉ xảy ra khi đồng thời : a+b+c=1; a-b+d=0; a+b-c=0; a-b-d=0 khi và chỉ khi a=0,25 ; b=0,25 ; c=0,5 ; d=0

Vậy .......

                                               

                                               

                                               

1 tháng 4 2020

Biến đổi đẳng thức về dạng : 

\(\frac{x^3}{x^4-1}=\frac{\left(a+b+c\right).x^3+\left(a-b+d\right).x^2+\left(a+b-c\right).x+\left(a-b-d\right)}{x^4-1}\)

Suy ra \(\hept{\begin{cases}a+b+c=1\\a-b+d=0\\a+b-c=0\end{cases}}\)Giải ra ta được a=b=1/4 ; c = 1/2 ; d = 0 

             \(\hept{a-b-d=0}\)

( Lưu ý : Phần lưu ý này không cần phải ghi : Nối dấu ngoặc 3 ý và dấu ngoặc 1 ý làm 1  )