K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

Ta có:

\(\dfrac{a_2}{a_1}+\dfrac{b_2}{b_1}+\dfrac{c_2}{c_1}=1\Rightarrow\left(\dfrac{a_2}{a_1}+\dfrac{b_2}{b_1}+\dfrac{c_2}{c_1}\right)^2=1\)

\(\Rightarrow\dfrac{a^2_2}{a^2_1}+\dfrac{b_2^2}{b_1^2}+\dfrac{c_2^2}{c_1^2}+2\left(\dfrac{a_2b_2}{a_1b_1}+\dfrac{b_2c_2}{b_1c_1}+\dfrac{c_2a_2}{a_1c_1}\right)=1\)

\(\Rightarrow\dfrac{a_2^2}{a^2_1}+\dfrac{b^2_2}{b^2_1}+\dfrac{c^2_2}{c^2_1}+2\left(\dfrac{a_2b_2c_1+b_2c_2a_1+c_2a_2b_1}{a_1b_1c_1}\right)=1\)(1)

Theo giả thiết:

\(\dfrac{a_1}{a_2}+\dfrac{b_1}{b_2}+\dfrac{c_1}{c_2}=0\Leftrightarrow\dfrac{a_1b_2c_2+b_1a_2c_2+c_1a_2b_2}{a_2b_2c_2}=0\)(2)

Từ (1) và (2) suy ra đpcm

10 tháng 1 2019

Đặt \(\dfrac{a_1}{a_2}=p;\dfrac{b_1}{b_2}=q;\dfrac{c_1}{c_2}=r\), có:

\(p+q+r=0\) (1)

\(\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{r}=1\) (2)

Từ (2) => \(\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}+2\dfrac{p+q+r}{pqr}=1\)

Kết hợp với (1), ta được: \(\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}=1\Rightarrow\dfrac{a^2_2}{a^2_1}+\dfrac{b^2_2}{b_1^2}+\dfrac{c_2^2}{c^2_1}=1\left(đpcm\right)\)

23 tháng 4 2016

trong sách nâng cao và phất triển 1 số chuyên đề toàn 9 tập 1 có đó

23 tháng 4 2016

p giải giúp mik đk k .. mik k có sách đấy

28 tháng 4 2016

Vì \(a_1,a_2,....,a_{2015}\)là các số nguyên dương, để không mất tính tổng quát ta giả sử \(a_1\le a_2\le a_3\le.....\le a_{2015}\)Suy ra
\(a_1\ge1,a_2\ge2,.......,a_{2015}\ge2015\) Vậy ta có \(A=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+..........+\frac{1}{\sqrt{a_{2015}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{2015}}=B\)

\(B=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2015}}<1+\frac{2}{\sqrt{2}+\sqrt{1}}+\frac{2}{\sqrt{3}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2014}}=C\)

Ta có trục căn thức ở mẫu của \(C\)Ta có: \(C=2\left(\sqrt{2015}-\sqrt{2014}+\sqrt{2014}-\sqrt{2013}+.....+\sqrt{2}-\sqrt{1}\right)+1=2\left(\sqrt{2015}-\sqrt{1}\right)+1\)

Mà: \(C=2\left(\sqrt{2015}-\sqrt{1}\right)+1<89\)Trái với giả thiết Vậy tồn tại ít nhất 2 số bằng nhau trong 2015 số nguyên dương đó

28 tháng 4 2016

http://olm.vn/thanhvien/phantuananhlop9a1

20 tháng 2 2019

Xét hiệu \(\left(a_1+a_2+a_3\right)\left(b_1+b_2+b_3\right)-3\left(a_1b_1+a_2b_2+a_3b_3\right)\)        

  \(=a_1\left(b_1+b_2+b_3\right)+a_2\left(b_1+b_2+b_3\right)+a_3\left(b_1+b_2+b_3\right)-3a_1b_1-3a_2b_2-3a_3b_3\)

  \(=a_1\left(b_1+b_2+b_3-3b_1\right)+a_2\left(b_1+b_2+b_3-3b_2\right)+a_3\left(b_1+b_2+b_3-3b_3\right)\)

  \(=a_1\left(b_2+b_3-2b_1\right)+a_2\left(b_1+b_3-2b_2\right)+a_3\left(b_1+b_2-2b_3\right)\)

 \(=a_1\left[\left(b_2-b_1\right)-\left(b_1-b_3\right)\right]+a_2\left[\left(b_3-b_2\right)-\left(b_2-b_1\right)\right]+a_3\left[\left(b_1-b_3\right)-\left(b_3-b_2\right)\right]\)

\(=a_1\left(b_2-b_1\right)-a_1\left(b_1-b_3\right)+a_2\left(b_3-b_2\right)-a_2\left(b_2-b_1\right)+a_3\left(b_1-b_3\right)-a_3\left(b_3-b_2\right)\)

\(=\left(a_1-a_2\right)\left(b_2-b_1\right)+\left(a_3-a_1\right)\left(b_1-b_3\right)+\left(a_2-a_3\right)\left(b_3-b_2\right)\)

Do giả thiết nên dễ thấy từng số hạng trên đều nhỏ hơn 0 nên tổng nhỏ hơn 0 

=> ĐPCM

Dấu "=" khi \(\hept{\begin{cases}a_1=a_2=a_3\\b_1=b_2=b_3\end{cases}}\)

3 tháng 12 2016

Đặt \(\hept{1\begin{cases}\frac{a_2}{a_1}=x\\\frac{b_2}{b_1}=y\\\frac{c_2}{c_1}=z\end{cases}}\)

Thì bài toán thành

x + y + z = 1(1); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\)

Chứng minh x2 + y2 + z= 1

Từ (2) ta có \(\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)

Từ (1) ta có

(x + y + z)2 = 1

<=> x2 + y2 + z2 + 2(xy + yz + zx) = 0

<=> x2 + y2 + z2 = 1

3 tháng 12 2016

bằng 1 đó chắc chắn lun