K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

=>

=>

=>

Tương tự, ta có: 

Do đó, ta có:

(ĐPCM)

10 tháng 2 2021

Xét hiệu VT - VP

\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)

Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0

\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)

=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)

mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm

 

10 tháng 2 2021

$a,b,c$ ở đây chỉ có vai trò là hoán vị thôi nên không được giả sử $a\ge b\ge c$ đâu ạ. Nên cách này chưa trọn vẹn.

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
Áp dụng BĐT AM-GM:

$\text{VT}=\sqrt{ab+c(a+b+c)}+\sqrt{bc+a(a+b+c)}+\sqrt{ca+b(a+b+c)}$

$=\sqrt{(c+a)(c+b)}+\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}$
$\leq \frac{c+a+c+b}{2}+\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}$

$=2(a+b+c)=2$
Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

26 tháng 6 2016
Áp dụng bdt Cô-si:\(\frac{a}{b}+ab\ge2a\)\(\frac{b}{c}+bc\ge2b\)\(\frac{c}{a}+ac\ge2c\)Cộng 2 vế của 3  bdt ta được:\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+ab+bc+ac\ge2a+2b+2c\)\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge2a+2b+2c-ab-bc-ac\)Mặt khác vì a,b,c là các số dương nên hiển nhiên ab+bc+ac>a+b+c\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>a+b+c\)
23 tháng 5 2018

\(\sqrt{\frac{a}{1-a}}=\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)(BĐT Cosi)

Tương tự \(\sqrt{\frac{b}{1-b}}\ge\frac{2b}{a+b+c}\) và \(\sqrt{\frac{c}{1-c}}\ge\frac{2c}{a+b+c}\)

\(\Rightarrow\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra \(\Leftrightarrow a=b+c;b=a+c;c=a+b\Rightarrow a+b+c=0\) (KTM)

Vậy \(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)

25 tháng 8 2017

Áp dụng BĐT AM-GM ta có:

\(VT=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8abc=VP\)

Khi \(a=b=c\) tức \(\Delta ABC\) đều

26 tháng 8 2017

Không dùng Cauchy kể cũng mệt

Ta có: \(\left(a-b\right)^2\ge0\)

\(a^2-2ab+b^2\ge0\)

\(a^2-2ab+4ab+b^2\ge4ab\)

\(a^2+2ab+b^2\ge4ab\)

\(\left(a+b\right)^2\ge4ab\)

Tương tự: \(\left(b+c\right)^2\ge4bc\)

\(\left(c+a\right)^2\ge4ca\)

Nhân từng vế, ta được

\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64x^2y^2z^2\)

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu ''='' xảy ra khi a=b=c, tức là tam giác đó đều

ấn vào ô báo cáo

25 tháng 2 2022

Tối quá, ko thấy bài đâu 

HT