K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

\(\dfrac{x^2+y^2}{a^2+b^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\)

\(\Leftrightarrow\dfrac{x^2+y^2}{a^2+b^2}=\dfrac{x^2b^2+a^2y^2}{a^2b^2}\)

\(\Leftrightarrow\left(x^2+y^2\right)a^2b^2=\left(a^2+b^2\right)\left(x^2b^2+a^2y^2\right)\)

\(\Leftrightarrow a^2b^2x^2+a^2b^2y^2=a^2x^2b^2+a^4y^2+b^4x^2+a^2y^2b^2\)

\(\Leftrightarrow0=a^4y^2+b^4x^2\)

Có \(\left\{{}\begin{matrix}a^4y^2\ge0\\b^4x^2\ge0\end{matrix}\right.\) =>\(a^4y^2+b^4x^2\ge0\)

 [=] xảy ra <=> \(\left\{{}\begin{matrix}a^4y^2=0\\b^4x^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) (vì a;b khác 0)

Vậy y=x=0 (đpcm)

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

NV
20 tháng 3 2023

Do \(x^2+y^2+z^2=1\Rightarrow x^2< 1\Rightarrow x< 1\)

\(\Rightarrow x^5< x^2\)

Tương tự ta có: \(y< 1\Rightarrow y^6< y^2\)\(z< 1\Rightarrow z^7< z^2\)

\(\Rightarrow x^5+y^6+z^7< x^2+y^2+z^2\)

\(\Rightarrow x^5+y^6+z^7< 1\)

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).