K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

Ban dung phuong phap the ban cho x= 1 di roi the vao ta duoc so du la 0 roi the tiep x=x+1=1+1=2 tiep tuc duoc du =0 vay =>>>>>voi moi x thi dc so du luon bang 0

2 tháng 5 2019

4 tháng 10 2023

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)

 

6 tháng 3 2016

Dư trong phép chia cho  \(x^2-x=x\left(x-1\right)\)  là hằng số.

Gọi thương của phép chia là  \(Q\left(x\right)\)  và dư là  \(r\), với mọi  \(x\)  ta có:

\(f\left(x\right)=\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}=\left(x^2-x\right).Q\left(x\right)+\left(ax+b\right)\)  

Với  \(x=0\)  thì  \(f\left(0\right)=\left(0^2+0-1\right)^{10}+\left(0^2-0+1\right)^{10}=\left(0^2-0\right).Q\left(0\right)+r\)

Khi đó,  \(2=r\)

Với  \(x=1\)  thì  \(f\left(1\right)=\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)^{10}=\left(1^2-1\right).Q\left(1\right)+r\)

Do đó,   \(2=r\)

Vậy,  số dư của phép chia là  \(2\)

20 tháng 11 2021

Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)

\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)

Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)

Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)