K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 8 2020

\(\left(a+b+c\right)^2=3a^2+3b^2+3c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

\(\Rightarrow P=a^2+\left(a+2\right)\left(a+a\right)+2020\)

\(\Rightarrow P=3a^2+4a+2020=3\left(a+\frac{2}{3}\right)^2+\frac{6056}{3}\ge\frac{6056}{3}\)

\(P_{min}=\frac{6056}{3}\) khi \(a=-\frac{2}{3}\)

17 tháng 8 2020

a) Áp dụng Cauchy Schwars ta có:

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

17 tháng 8 2020

b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi: x=y=1

21 tháng 8 2018

\(ab+bc+ca=0\)

=>   \(\frac{ab+bc+ca}{abc}=0\)

=>  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Đặt:  \(\frac{1}{a}=x;\)\(\frac{1}{b}=y;\)\(\frac{1}{c}=z\)

Ta có:   \(x+y+z=0\)

=>  \(x^3+y^3+z^3=3xyz\)  (tự c/m, ko c/m đc ib)

hay  \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(B=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc.\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

     \(=abc.\frac{3}{abc}=3\)

23 tháng 8 2018

thanks

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:

Ta có:

$2(ab+bc+ac)=(a+b+c)^2-(a^2+b^2+c^2)=6^2-12=24=2(a^2+b^2+c^2)$

$\Rightarrow 2(a^2+b^2+c^2)-2(ab+bc+ac)=0$

$\Leftrightarrow (a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

$\Rightarrow a-b=b-c=c-a=0$

$\Rightarrow a=b=c$. Mà $a+b+c=6$ nên $a=b=c=2$

Khi đó:

$A=(2-3)^{2020}+(2-3)^{2020}+(2-3)^{2020}=1+1+1=3$

 

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

NV
30 tháng 12 2020

\(\left(a+2\right)\left(a-3\right)\le0\)\(\Leftrightarrow a^2-6\le a\)

Tương tự: \(b^2-6\le b\) ; \(c^2-6\le c\)

Cộng vế với vế:

\(M\ge a^2+b^2+c^2-18=4\)

Dấu '=" xảy ra khi \(\left(a;b;c\right)=\left(3;3-2\right)\) và hoán vị

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
4 tháng 4 2016

Sai đề rồi nha bạn! 

Đề:  Cho  \(a,b,c>0\)  thỏa mãn  \(a^2+b^2+c^2=\frac{5}{3}.\)  Chứng minh rằng:  \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)

Lời giải:

Với mọi  \(a,b,c\in R\)  thì ta luôn có:

\(a^2+b^2+c^2\ge2bc+2ca-2ab\)  \(\left(\text{*}\right)\) 

Ta cần chứng minh  \(\left(\text{*}\right)\)  là bất đẳng thức đúng!

Thật vậy,  từ  \(\left(\text{*}\right)\)  \(\Leftrightarrow\)  \(a^2+b^2+c^2+2ab-2bc-2ca\ge0\)

                             \(\Leftrightarrow\)  \(\left(a+b-c\right)^2\ge0\)  \(\left(\text{**}\right)\)

Bất đẳng thức  \(\left(\text{**}\right)\)  hiển nhiên đúng với mọi  \(a,b,c\) , mà các phép biến đổi trên tương đương 

Do đó, bất đẳng thức  \(\left(\text{*}\right)\)  được chứng minh.

Xảy ra đẳng thức trên khi và chỉ khi  \(a+b=c\)

Mặt khác,  \(a^2+b^2+c^2=\frac{5}{3}\)  (theo giả thiết)

Mà  \(\frac{5}{3}=1\frac{2}{3}<2\)

\(\Rightarrow\)  \(a^2+b^2+c^2<2\)  \(\left(\text{***}\right)\)

Từ  \(\left(\text{*}\right)\) kết hợp với  \(\left(\text{***}\right)\), ta có thể viết 'kép' lại:  \(2bc+2ca-2ab\le a^2+b^2+c^2<2\)

Suy ra  \(2bc+2ca-2ab<2\)

Khi đó, vì  \(abc>0\) (do  \(a,b,c\) không âm) nên chia cả hai vế của bất đẳng trên cho  \(2abc\), ta được:

\(\frac{2bc+2ca-2ab}{2abc}<\frac{2}{2abc}\)

\(\Leftrightarrow\)  \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)

Vậy, với  \(a,b,c\)  là các số thực dương thỏa mãn điều kiện  \(a^2+b^2+c^2=\frac{5}{3}\)  thì ta luôn chứng minh được:

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)