K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2019

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow A\ge3\sqrt[3]{\frac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}\le\frac{8\left(a+b+c\right)}{3}=8\)

\(\Rightarrow\frac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}\ge\frac{1}{8}\)

\(\Rightarrow3\sqrt[3]{\frac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\ge3\sqrt[3]{\frac{1}{8}}=\frac{3}{2}\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow A\ge\frac{3}{2}\)

\(\Rightarrow A_{min}=\frac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

15 tháng 5 2017

Áp dụng BĐT Côsi-Shaw ta có :

\(A=\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\ge\dfrac{9}{\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}}\)

Đặt \(B=\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\)

Ta sẽ có : \(\dfrac{9}{B}\)

Mà : \(\dfrac{9}{B}\) đạt GTNN khi B lớn nhất .

Áp dụng BĐT Cô si , ta có :

\(\sqrt[3]{\left(a+7b\right).8.8}\le\dfrac{a+7b+8+8}{3}\) ( 1 )

Tương tự , ta có :

\(\sqrt[3]{\left(b+7c\right).8.8}\le\dfrac{b+7c+8+8}{3}\left(2\right)\)

\(\sqrt[3]{\left(c+7a\right).8.8}\le\dfrac{c+7a+8+8}{3}\) \(\left(3\right)\)

Cộng từng vế của \(\left(1\right),\left(2\right),\left(3\right)\) ta có :

\(4.\left(\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\right)\le\dfrac{8}{3}\left(a+b+c\right)+16\)

\(\Leftrightarrow4B\le24\)

\(\Leftrightarrow B\le6\)

Vậy \(Max_B=6\) \(\Leftrightarrow Min_A=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=1.\)

Sai thôi nha leuleu

16 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow A\ge3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}\le\dfrac{8\left(a+b+c\right)}{3}=8\)

\(\Rightarrow\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}\ge\dfrac{1}{8}\)

\(\Rightarrow3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\ge3\sqrt[3]{\dfrac{1}{8}}=\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow A\ge\dfrac{3}{2}\)

\(\Rightarrow A_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

12 tháng 9 2021

Ta có: \(4ab\le2a^2+2b^2\)

=> \(\sqrt{2a^2+7b^2+16ab}\le\sqrt{4a^2+9b^2+12ab}=\sqrt{\left(2a+3b\right)^2}=2a+3b\)

=> \(\frac{a^2}{\sqrt{2a^2+7b^2+16ab}}\ge\frac{a^2}{2a+3b}\)

Chứng minh tương tự 

=> \(T\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)

Áp dụng bđt bunhia dạng phân thức

=> \(T\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=1\)

=> \(MinT=1\)xảy ra khi a=b=c=5/3

10 tháng 3 2020

Bài 2 :

Ta có :

\(2a^2+16ab+7b^2=\left(2a+3b\right)^2-2\left(a-b\right)^2\le\left(2a+3b\right)^2\)

\(\Rightarrow P\ge\frac{25a^2}{2a+3b}+\frac{25b^2}{2b+3c}+\frac{c^2\left(a+3\right)}{a}\)

Áp dụng BĐT Cô - si ta có :

\(\frac{25a^2}{2a+3b}+2a+3b\ge10a\)

\(\frac{25b^2}{2b+3c}+2b+3c\ge10b\)

\(\frac{c^2\left(a+3\right)}{a}=\left(c^2+1\right)+\left(\frac{3c^2}{a}+3a\right)-3a-1\ge2c+6c-3a-1=8c-3a-1\)

Khi đó :

\(P\ge\left(10-2a-3b\right)+\left(10b-2b-3c\right)+\left(8c-3a-1\right)\)

\(\Rightarrow P\ge5\left(a+b+c\right)-1=14\)

Vậy \(MinP=14\) khi a=b=c=1

14 tháng 5 2021

Đặt `a=\sqrt{7x+9},b=\sqrt{7y+9},c=\sqrt{7z+9}`
`=>a^2+b^2+c^2=7(x+y+z)+27=34`
`=>a^2=34-a^2-b^2<=16`
`=>9<=a^2<=4`
`=>3<=a<=4`
`=>(a-3)(a-4)<=0`
`<=>a^2+12<=7a`
`=>a>=(a^2+12)/7)`
CMTT:`b>=(b^2)/(7)`
`c>=(c^2+12)/(7)`
`=>a+b+c>=(a^2+b^2+c^2+36)/(7)=10`
Dấu "=" `<=>(x,y,z)=(0,0,1)` và các hoán vị 
Bài này hơi phức tạp xíu 

14 tháng 5 2021

Đặt `a=\sqrt{7x+9},b=\sqrt{7y+9},c=\sqrt{7z+9}`
`=>a^2+b^2+c^2=7(x+y+z)+27=34`
`=>a^2=34-a^2-b^2<=16`
`=>9<=a^2<=16`
`=>3<=a<=4`
`=>(a-3)(a-4)<=0`
`<=>a^2+12<=7a`
`=>a>=(a^2+12)/7)`
CMTT:`b>=(b^2)/(7)`
`c>=(c^2+12)/(7)`
`=>a+b+c>=(a^2+b^2+c^2+36)/(7)=10`
Dấu "=" `<=>(x,y,z)=(0,0,1)` và các hoán vị 
Bài này hơi phức tạp xíu 

16 tháng 5 2020

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

16 tháng 5 2020

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c

7 tháng 3 2018

Tịnh tách các bài ra nhé.

18 tháng 2 2020

Giúp mình với

12 tháng 4 2020

Chứng minh gì vậy bạn