K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

Gợi ý này: Đặt \(a=x^3,b=y^3,c=z^3\) rồi áp dụng bất đẳng thức này \(x^3+y^3\ge xy\left(x+y\right)\) rồi biến đổi 1 chút nx là ra

28 tháng 5 2018

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)

\(\Leftrightarrow\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

\(\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(\text{ta áp dụng BĐT cô-si}\right)\)

       \(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\)

Tương tự, ta có: 

\(\frac{1}{1+c}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+b\right)}}\)

Nhân theo vế. ta có: \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{\sqrt{a^2b^2c^2}}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}=\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow abc\le\frac{1}{8}\)

Dấu "=" xảy ra khi: \(Q=abc;MAX_Q=\frac{1}{8}\Leftrightarrow a=b=c=\frac{1}{2}\)

P/s: Ko chắc

28 tháng 5 2018

Dùng cauchy-schawarz là ra nhé :)

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\text{VT}=\sum \frac{a+1}{b^2+1}=\sum [(a+1)-\frac{b^2(a+1)}{b^2+1}]=\sum (a+1)-\sum \frac{b^2(a+1)}{b^2+1}\)

\(=6-\sum \frac{b^2(a+1)}{b^2+1}\geq 6-\sum \frac{b^2(a+1)}{2b}=6-\sum \frac{ab+b}{2}\)

\(=6-\frac{\sum ab+3}{2}\geq 6-\frac{\frac{1}{3}(a+b+c)^2+3}{2}=6-\frac{3+3}{2}=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

9 tháng 8 2021

Ta có: \(2a+b^2=2a\left(a+b+c\right)+b^2=b^2+2a^2+2ab+2ac\)

\(\ge4ab+2ac+a^2\)

\(\Rightarrow\frac{a}{2a+b^2}\le\frac{a}{4ab+2ac+a^2}=\frac{1}{4b+2c+a}\)

\(\le\frac{1}{49}.\frac{49}{4b+2c+a}=\frac{1}{49}.\frac{\left(4+2+1\right)^2}{4b+2c+a}\)

\(\le\frac{1}{49}\left(\frac{16}{4b}+\frac{4}{2c}+\frac{1}{a}\right)=\frac{1}{49}\left(\frac{4}{b}+\frac{2}{c}+\frac{1}{a}\right)\)

CMTT: \(\frac{b}{2b+c^2}\le\frac{1}{49}\left(\frac{4}{c}+\frac{2}{a}+\frac{1}{b}\right);\frac{c}{2c+a^2}\le\frac{1}{49}\left(\frac{4}{a}+\frac{2}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{2a+b^2}+\frac{b}{2b+c^2}+\frac{c}{2c+a^2}\le\frac{1}{7}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm )

31 tháng 8 2019

\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)

Tương tự cộng lại quy đồng ta có đpcm 

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

5 tháng 8 2016

 \(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ca}\)

\(=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ca}\)

thay a.b.c=1 Ta đc:

\(a=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+a}\) cộng 3 phân số cùng mẫu c+ac+1

\(=\frac{c+ac+1}{c+ac+1}=1\)

tick cho mk vs nhé

14 tháng 5 2018

Ta có : \(a^2+\frac{1}{9}\ge\frac{2}{3}a\)

Suy ra 

\(VT\le\Sigma\left(\frac{a}{\left(a^2+1\right)}\right)\le\Sigma\frac{a}{\frac{2}{3}a+\frac{8}{9}}=\Sigma\frac{9a}{6a+8}=\frac{9}{2}-\Sigma\frac{6}{4+3a}\le\frac{9}{2}-\frac{54}{12+3\left(a+b+c\right)}=\frac{9}{10}\)

Đẳng thức xảy ra <=> \(a=b=c=\frac{1}{3}\)

10 tháng 2 2019

Cách khác nhá.

Lời giải

Ta sẽ c/m:\(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\)

Thật vậy,ta có: BĐT \(\Leftrightarrow\frac{a}{a^2+1}-\frac{18}{25}a-\frac{3}{50}\le0\)

Thật vậy:\(VT=\frac{-\left(4a+3\right)\left(3a-1\right)^2}{50\left(a^2+1\right)}\le0\forall x\)

Vậy \(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\).Thiết lập hai BĐT còn lại tương tự và cộng theo vế:

\(VT\le\frac{18}{25}\left(a+b+c\right)+\frac{9}{50}=\frac{9}{10}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)