K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)

\(\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)

\(\left(\dfrac{1+xy-\left(1+x^2\right)}{\left(1+x^2\right)\left(1+xy\right)}\right)+\left(\dfrac{1+xy-\left(1+y^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\right)\ge0\)

\(\left(\dfrac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}\right)+\left(\dfrac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\right)\ge0\)

\(\dfrac{-x\left(x-y\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{-y\left(y-x\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\dfrac{-x\left(x-y\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

=> -x(x-y)(1+y2)+y(x-y)(1+x2) ≥ 0

⇔ (x-y)[-x(1+y2)+y(1+x2)]≥0

⇔ (x-y)(-x-xy2+y+x2y) ≥0

⇔ (x-y)[-(x-y)+(x2y-y2x)] ≥ 0

⇔ (x-y)[-(x-y)+xy(x-y) ]≥ 0

⇔ (x-y)(x-y)(xy-1)≥ 0

⇔ (x-y)2 (xy-1) ≥0 (luôn đúng ∀ xy ≥ 1)

=> đpcm

22 tháng 3 2019

bạn pải giả sử trước chứ nếu ntn thì người chấm hỏi ai cho lôi phần chứng minh ra làm phần mục đề

8 tháng 12 2023

Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)

\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\) 

(vì \(2013=3.671=3\left(xy+yz+zx\right)\))

\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)

\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)

\(=\dfrac{1}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)

\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)

\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))

Vậy ta có đpcm.

NV
18 tháng 5 2021

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2+2xy}{x^2y^2}\)

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{x^2y^2}+\dfrac{2}{xy}\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2x^2y^2}}+\dfrac{2}{xy}=\dfrac{2}{\left|xy\right|}+\dfrac{2}{xy}\ge\dfrac{2}{xy}+\dfrac{2}{xy}=\dfrac{4}{xy}\)

21 tháng 5 2018

đặt x/y=a hay xy/z=a hay j đó là ra nói chung là 4 biế
n lười nháp

NV
22 tháng 12 2022

Đặt vế trái của BĐT cần chứng minh là P

Ta có:

\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)

\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y\)

NV
1 tháng 3 2021

\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}=\dfrac{x^2+y^2+2}{\left(xy\right)^2+x^2+y^2+1}=1-\dfrac{\left(xy\right)^2-1}{\left(xy\right)^2+x^2+y^2+1}\ge1-\dfrac{\left(xy\right)^2-1}{\left(xy\right)^2+2xy+1}\)

\(\Rightarrow\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge1-\dfrac{\left(xy+1\right)\left(xy-1\right)}{\left(xy+1\right)^2}=1-\dfrac{xy-1}{xy+1}=\dfrac{2}{1+xy}\) (đpcm)

b. Tương tự câu a:

\(\dfrac{1}{1+x^2}+\dfrac{1}{1+z^2}\ge\dfrac{2}{1+zx}\) ; \(\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{2}{1+yz}\)

Cộng vế với vế và rút gọn:

\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{z+zx}\) (1)

Mà \(\left\{{}\begin{matrix}z\ge1\Rightarrow1+xy\le1+xyz\\y\ge1\Rightarrow1+zx\le1+xyz\\x\ge1\Rightarrow1+yz\le1+xyz\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{1}{1+xyz}+\dfrac{1}{1+xyz}+\dfrac{1}{1+xyz}=\dfrac{3}{1+xyz}\) (2)

TỪ (1); (2) \(\Rightarrowđpcm\)

1 tháng 3 2021

a) Ta có: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)

\(\Leftrightarrow\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}+\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(1+xy\right)-\left(1+x^2\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{\left(1+xy\right)-\left(1+y^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(xy-x^2\right)\left(1+y^2\right)+\left(xy-y^2\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{xy+xy^3-x^2-x^2y^2+xy+x^3y-y^2-x^2y^2}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{2xy+xy\left(x^2+y^2\right)-2x^2y^2-x^2-y^2}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{xy\left(x^2-2xy+y^2\right)-\left(x^2-2xy+y^2\right)}{\left(1+xy\right)\left(1+y^2\right)\left(1+x^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{xy\left(x-y\right)^2-\left(x-y\right)^2}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)(luôn đúng)

=> Đẳng thức ban đầu được chứng minh.

P/s: Cái đoạn sau bạn bổ sung thêm vào là vì x và y lớn hơn bằng 1 nên xy-1 sẽ lớn hơn hoặc bằng 0 nhé, mình lười quá ngại chèn:vv.

Còn câu b bạn đợi mình nháp xíu.

20 tháng 7 2017

Chứng minh 1/(1+x)^2 + 1/(1+y)^2 luôn >= 1/(1+xy)? | Yahoo Hỏi & Đáp

Nhấn vào link đó!

NV
17 tháng 9 2021

\(VT=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{4039}{2xy}\)

\(VT\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{4039}{2.\dfrac{1}{4}\left(x+y\right)^2}=\dfrac{8082}{\left(x+y\right)^2}\ge\dfrac{8082}{1^2}=8082\)

20 tháng 2 2021

cái chỗ math processing error kia là \(3\left(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}+\dfrac{1}{z^2+1}\right)+\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)\ge\dfrac{985}{108}\)