K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

a)

Áp dụng bất đẳng thức cô si cho 2 số ta có

x2+y2 ≥ 2\(\sqrt{x^2y^2}\)

⇔x2+y2 ≥ 2xy

TT ta có

x2+t2 ≥ 2xt

y2+z2 ≥ 2yz

z2+t2 ≥ 2zt

cộng vế vs vế ta có

=> x2+y2+x2+t2+y2+z2+t2 ≥ 2xy+2xt+2yz+2zt

⇔ 2(x2+y2+z2+t2) ≥ 2(xy+xt+yz+zt)

⇔ 2 .1 ≥2 A

⇔ 1≥ A

⇔ A ≤ 1

=> Max A =1 dấu "=" xảy ra khi x=y=t=z= \(\pm\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 3 2018

Câu b)

Đây là bài toán quen thuộc của dạng toán xác định điểm rơi trong BĐT Cô-si:

Áp dụng BĐT Cô-si:

\(\frac{2}{3}x^2+\frac{2}{3}y^2\geq 2\sqrt{\frac{2}{3}x^2.\frac{2}{3}y^2}=\frac{4}{3}|xy|\geq \frac{4}{3}xy\)

\(\frac{1}{3}x^2+\frac{4}{3}t^2\geq 2\sqrt{\frac{1}{3}x^2.\frac{4}{3}t^2}=\frac{4}{3}|xt|\geq \frac{4}{3}xt\)

\(\frac{1}{3}y^2+\frac{4}{3}z^2\geq 2\sqrt{\frac{1}{3}y^2.\frac{4}{3}z^2}=\frac{4}{3}|yz|\geq \frac{4}{3}yz\)

\(\frac{2}{3}z^2+\frac{2}{3}t^2\geq 2\sqrt{\frac{2}{3}z^2.\frac{2}{3}t^2}=\frac{4}{3}|zt|\geq \frac{4}{3}zt\)

Cộng theo vế các BĐT thu được và rút gọn:

\(\Rightarrow x^2+y^2+2z^2+2t^2\geq \frac{4}{3}(xy+xt+yz+zt)\)

\(\Leftrightarrow \frac{4}{3}(xy+xt+yz+zt)\leq 1\)

\(\Leftrightarrow B=(x+z)(y+t)\leq \frac{3}{4}\) hay $B_{\max}=\frac{3}{4}$

Dấu bằng xảy ra khi \(x=y=2z=2t\Leftrightarrow (x,y,z,t)=\left(\frac{1}{\pm \sqrt{3}}; \frac{1}{\pm\sqrt{3}}; \frac{1}{\pm 2\sqrt{3}}; \frac{1}{\pm 2\sqrt{3}}\right)\)

NV
28 tháng 3 2023

Chắc đề là \(x+y+z=3\)

Ta có: 

\(\left(2x+y+z\right)^2=\left(x+y+x+z\right)^2\ge4\left(x+y\right)\left(x+z\right)\)

\(\Rightarrow P\le\dfrac{x}{4\left(x+y\right)\left(x+z\right)}+\dfrac{y}{4\left(x+y\right)\left(y+z\right)}+\dfrac{z}{4\left(x+z\right)\left(y+z\right)}\)

\(\Rightarrow P\le\dfrac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{4\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\dfrac{xy+yz+zx}{2\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Mặt khác:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz\)

\(=\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)

\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\dfrac{1}{3}.\left(x+y+z\right).\dfrac{1}{3}\left(xy+yz+zx\right)\)

\(=\dfrac{8}{9}\left(x+y+z\right)\left(zy+yz+zx\right)=\dfrac{8}{3}\left(xy+yz+zx\right)\)

\(\Rightarrow P\le\dfrac{xy+yz+zx}{2.\dfrac{8}{3}\left(xy+yz+zx\right)}=\dfrac{3}{16}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

13 tháng 4 2017

Bài 1

\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)

\(M=\dfrac{x+12-15}{x}+\dfrac{y+12-15}{y}+\dfrac{z+12-15}{z}\)

\(M=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-3}{z}\)

\(M=1-\dfrac{3}{x}+1-\dfrac{3}{y}+1-\dfrac{3}{z}\)

\(M=3-\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)\)

\(M=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{9}{x+y+z}=\dfrac{3}{4}\)

\(\Rightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{9}{4}\)

\(\Rightarrow3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\le\dfrac{3}{4}\)

\(\Leftrightarrow M\le\dfrac{3}{4}\)

Vậy \(M_{max}=\dfrac{3}{4}\)

Dấu " = " xảy ra khi \(x=y=z=4\)

Bài 2

\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)

Xét \(\dfrac{a^3+b^3+c^3}{4abc}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{4abc}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}+\dfrac{3}{4}\)

\(=\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{4\left(ab+bc+ca\right)}+\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)-9\left(ab+bc+ca\right)}{4\left(ab+bc+ca\right)}+\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{9}{4}+\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{4abc}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{3}{2}\)

\(\Rightarrow\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}-\dfrac{3}{2}\)

\(\Rightarrow\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}-\dfrac{3}{2}\) (1)

Xét \(\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}\)

\(=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{30\left(a^2+b^2+c^2\right)}\)

\(=\dfrac{1}{30}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\) (2)

Cộng (1) và (2) theo từng vế

\(P\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\dfrac{22}{15}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge2\sqrt{\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{225\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}}\)

\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge2\sqrt{\dfrac{1}{225}}\)

\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge\dfrac{2}{15}\)

\(P\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\dfrac{22}{15}\ge\dfrac{2}{15}-\dfrac{22}{15}=-\dfrac{4}{3}\)

\(\Leftrightarrow P\ge-\dfrac{4}{3}\)

Vậy \(P_{min}=\dfrac{-4}{3}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

13 tháng 4 2017

Bài 1

\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)

27 tháng 7 2017

b, \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y\right)^2\left(x-y\right)-\left(y-z\right)^2\left[\left(x-y\right)+\left(z-x\right)\right]+\left(z-x\right)^2\left(z-x\right)\)

\(=\left(x-y\right)^2\left(x-y\right)-\left(y-z\right)^2\left(x-y\right)-\left(y-z\right)^2\left(z-x\right)+\left(z-x\right)^2\left(z-x\right)\)

\(=\left(x-y\right)\left[\left(x-y\right)^2-\left(y-z\right)^2\right]-\left(z-x\right)\left[\left(y-z\right)^2-\left(z-x\right)^2\right]\)

\(=\left(x-y\right)\left(x-y-y+z\right)\left(x-y+y-z\right)-\left(z-x\right)\left(y-z-z+x\right)\left(y-z+z-x\right)\)

\(=\left(x-y\right)\left(x-2y+z\right)\left(x-z\right)-\left(z-x\right)\left(y-2z+x\right)\left(y-x\right)\)

\(=\left(x-y\right)\left(x-2y+z\right)\left(x-z\right)-\left(x-z\right)\left(y-2z+x\right)\left(x-y\right)\)

\(=\left(x-y\right)\left(x-z\right)\left(x-2y+z-y+2z-x\right)\)

\(=\left(x-y\right)\left(x-z\right)\left(3z-3y\right)\)

\(=3\left(x-y\right)\left(x-z\right)\left(z-y\right)\)

c, \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)-y^2z^2\left[\left(y-x\right)-\left(z-x\right)\right]-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)-y^2z^2\left(y-x\right)+y^2z^2\left(z-x\right)-z^2x^2\left(z-x\right)\)

\(=\left(x^2y^2-y^2z^2\right)\left(y-x\right)+\left(y^2z^2-z^2x^2\right)\left(z-x\right)\)

\(=y^2\left(x-z\right)\left(x+z\right)\left(y-x\right)+z^2\left(y-x\right)\left(x+y\right)\left(z-x\right)\)

\(=y^2\left(x-z\right)\left(x+z\right)\left(y-x\right)-z^2\left(y-x\right)\left(x+y\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(y-x\right)\left[y^2\left(x+z\right)-z^2\left(x+y\right)\right]\)

\(=\left(x-z\right)\left(y-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)

\(=\left(x-z\right)\left(y-x\right)\left[x\left(y^2-z^2\right)+yz\left(y-z\right)\right]\)

\(=\left(x-z\right)\left(y-x\right)\left[x\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\right]\)

\(=\left(x-z\right)\left(y-x\right)\left(y-z\right)\left(xy+xz+yz\right)\)

d, \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)