K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

Áp dụng bđt AM - GM, ta có:

\(4\sqrt{3}S=4\sqrt{3}\times\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(=4\sqrt{3}\times\dfrac{\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}{4}\)

\(\le\sqrt{3\left(a+b+c\right)}\times\sqrt{\dfrac{\left(a+b-c+b+c-a+c+a-b\right)^3}{27}}\)

\(=\dfrac{\left(a+b+c\right)^2}{3}\)

\(=\dfrac{a^2+b^2+c^2+2ab+2bc+2ac}{3}\)

\(=\dfrac{3\left(a^2+b^2+c^2\right)-\left(a^2-2ab+b^2\right)-\left(a^2-2ac+c^2\right)-\left(b^2-2bc+c^2\right)}{3}\)

\(=a^2+b^2+c^2-\dfrac{\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2}{3}\)

Dấu "=" xảy ra khi a = b = c (\(\Delta ABC\) đều)

Làm linh tinh đấy -.- hổng chắc đâu Ọ v Ọ

29 tháng 10 2017

Còn một cách rất pá đạo nữa , không hiểu nổi lấy ý tưởng từ đâu luôn:

CM:\(a^2+b^2+c^2\ge4\sqrt{3}S\)

\(\Leftrightarrow a^2+b^2+c^2-4\sqrt{3}S\ge0\)

\(\Leftrightarrow a^2+b^2+a^2+b^2-2ab.\cos C-4\sqrt{3}.\dfrac{1}{2}.ab.\sin C\ge0\)( định lý cos + CT diện tích)

\(\Leftrightarrow2\left(a^2+b^2-2ab\right)+4ab-4ab.\dfrac{1}{2}.\cos C-4ab.\dfrac{\sqrt{3}}{2}.\sin C\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2+4ab\left(1-\cos\dfrac{\pi}{3}.\cos C-\sin\dfrac{\pi}{3}.\sin C\right)\ge0\)

( \(\cos\dfrac{\pi}{3}=\cos60=\dfrac{1}{2}\);\(\sin\dfrac{\pi}{3}=\sin60=\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow2\left(a-b\right)^2+4ab\left[1-\cos\left(\dfrac{\pi}{3}-C\right)\right]\ge0\)( luôn đúng vì \(-1\le\cos\alpha\le1\))

( \(\cos\left(x-y\right)=\cos x\cos y+\sin x\sin y\))

NV
27 tháng 7 2021

Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Ta có:

\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)

Tương tự và cộng lại ta được BĐT bên trái

Dấu "=" xảy ra khi \(a=b=c\)

Bên phải:

Áp dụng BĐT Bunhiacopxki:

\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)

Mặt khác do a;b;c là 3 cạnh của 1 tam giác:

\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)

27 tháng 7 2021

thề luôn bài như vầy mà cả viết lẫn nghĩ có 10phut

 

20 tháng 6 2016

bạn ơi giúp mình với C/M: (ax^2 - bx^2)^4 + (2ab+bx^2)^4 + (2ab+a^2)^4 = 2(a^2+ab+b^2)

27 tháng 11 2019

Đặt \(\frac{\left(a+b-c\right)}{2}=x;\frac{\left(c+a-b\right)}{2}=y;\frac{\left(b+c-a\right)}{2}=z\) thì x, y, z > 0(do a, b, c là độ dài 3 cạnh tam giác)

Và \(a=x+y;b=x+z;c=y+z\)

Thay vào, ta cần chứng minh: \(2\left[xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+6xyz\right]>0\) (luôn đúng do x, y, z > 0)

Done!

a = 60cm

p = 160/2 = 80cm

p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)

Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN

Áp dụng bđt Cosin, ta có:

\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)

=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)

=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400

=> S <= 1200 (\(cm^2\))

Dấu "=" xảy ra

<=> \(p-b\) = \(p-c\)

<=> b = c

Thay b = c vào (1), ta được:

p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)

=> đpcm

12 tháng 5 2018

Do hai tam giác có độ dài 3 cạnh là a,b,c và a',b',c' nên ta có tỷ lệ sau 

\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)

Đặt \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\) \(\Rightarrow\hept{\begin{cases}a=k.a'\\b=k.b'\\c=k.c'\end{cases}}\)

Ta có : \(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{ka'.a'}+\sqrt{kb'.b'}+\sqrt{kc'.c'}\)

                                                   \(=a'.\sqrt{k}+b'.\sqrt{k}+c'.\sqrt{k}=\sqrt{k}.\left(a'+b'+c'\right)\)

Ta lại có : \(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k.\left(a'+b'+c'\right)\left(a'+b'+c'\right)}=\sqrt{k}.\left(a'+b'+c'\right)\)

Vậy ......