K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

a)Áp dụng BĐT AM-GM ta có:

\(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+1\ge2y\end{matrix}\right.\)\(\Rightarrow x^2+2y^2+1\ge2xy+2y\)

\(\Rightarrow x^2+2y^2+3\ge2xy+2y+2\)

\(\Rightarrow\dfrac{1}{x^2+2y^2+3}\le\dfrac{1}{2\left(xy+y+1\right)}\Leftrightarrow\dfrac{2}{x^2+2y^2+3}\le\dfrac{1}{xy+y+1}\)

b)Áp dụng bổ đề trên ta có:

\(a^2+2b^2+3\ge2ab+2b+2\Rightarrow\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2\left(ab+b+1\right)}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{1}{b^2+2c^2+3}\le\dfrac{1}{2\left(bc+b+1\right)};\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2\left(ac+c+1\right)}\)

Cộng theo vế 3 BĐT trên ta có:

\(Q\le\dfrac{1}{2\left(ab+b+1\right)}+\dfrac{1}{2\left(bc+b+1\right)}+\dfrac{1}{2\left(ac+c+1\right)}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+b+1}+\dfrac{1}{ac+c+1}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{a}{ac+c+1}+\dfrac{ac}{ac+c+1}+\dfrac{1}{ac+c+1}\right)\left(abc=1\right)\)

\(=\dfrac{1}{2}\left(\dfrac{ac+c+1}{ac+c+1}\right)=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

14 tháng 3 2021

Áp dụng bđt Schwarz ta có:

\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).

NV
31 tháng 12 2021

\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)

Tương tự ...

\(\Rightarrow P\le\dfrac{1}{2\left(ab+b+1\right)}+\dfrac{1}{2\left(bc+c+1\right)}+\dfrac{1}{2\left(ca+a+1\right)}\)

\(=\dfrac{1}{2}\left(\dfrac{c}{abc+bc+c}+\dfrac{1}{bc+c+1}+\dfrac{bc}{ca.bc+a.bc+bc}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{c}{1+bc+c}+\dfrac{1}{bc+c+1}+\dfrac{bc}{c+1+bc}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{c+1+bc}{1+bc+c}\right)=\dfrac{1}{2}\)

\(P_{max}=\dfrac{1}{2}\) khi \(a=b=c=1\)

20 tháng 8 2023

Ta có \(ab+bc+ca=3abc\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và 

\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)

Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)

\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)

\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))

\(T\le\dfrac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)

Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)

 (Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)

20 tháng 8 2023

 Bạn Lê Song Phương xem lại dùm nhé, thanks!

\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)

\(...\Rightarrow T\le2.3=6\)

\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)

NV
18 tháng 4 2021

\(y\ge xy+1\ge2\sqrt{xy}\Rightarrow\sqrt{\dfrac{y}{x}}\ge2\Rightarrow\dfrac{y}{x}\ge4\)

\(Q=\dfrac{1-\dfrac{2y}{x}+2\left(\dfrac{y}{x}\right)^2}{\dfrac{y}{x}+\left(\dfrac{y}{x}\right)^2}\)

Đặt \(\dfrac{y}{x}=a\ge4\)

\(Q=\dfrac{2a^2-2a+1}{a^2+a}=\dfrac{2a^2-2a+1}{a^2+a}-\dfrac{5}{4}+\dfrac{5}{4}=\dfrac{\left(a-4\right)\left(3a-1\right)}{4\left(a^2+1\right)}+\dfrac{5}{4}\ge\dfrac{5}{4}\)

\(Q_{min}=\dfrac{5}{4}\) khi \(a=4\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

NV
20 tháng 3 2021

\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\Rightarrow\dfrac{y}{x}\ge4\)

\(P=\dfrac{1-\dfrac{2y}{x}+2\left(\dfrac{y}{x}\right)^2}{1+\dfrac{y}{x}}\)

Đặt \(\dfrac{y}{x}=a\ge4\Rightarrow P=\dfrac{2a^2-2a+1}{a+1}=2a-4+\dfrac{5}{a+1}\)

\(P=\dfrac{a+1}{5}+\dfrac{5}{a+1}+\dfrac{9}{5}.a-\dfrac{21}{5}\ge2\sqrt{\dfrac{5\left(a+1\right)}{5\left(a+1\right)}}+\dfrac{9}{5}.4-\dfrac{21}{5}=5\)

Dấu "=" xảy ra khi \(a=4\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

20 tháng 3 2021

Nguyễn Việt Lâm Giáo viên làm thế nào để có thể nghĩ được ra như vậy?

15 tháng 9 2023

1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\)  \(\left(a;b;c\in R\right)\)

Ta có :

\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)

Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được

\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)

15 tháng 9 2023

\(3^x=y^2+2y\left(x;y>0\right)\)

\(\Leftrightarrow3^x+1=y^2+2y+1\)

\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)

- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)

- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)  

\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)

- Với \(x>1;y>1\)

\(\left(y+1\right)^2\) là 1 số chính phương

\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương

\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)

Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài

NV
27 tháng 3 2022

\(6a+3b+2c=abc\Leftrightarrow\dfrac{2}{ab}+\dfrac{3}{ac}+\dfrac{6}{bc}=1\)

Đặt \(\left(\dfrac{1}{a};\dfrac{2}{b};\dfrac{3}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(Q=\dfrac{1}{\sqrt{\dfrac{1}{x^2}+1}}+\dfrac{2}{\sqrt{\dfrac{4}{y^2}+4}}+\dfrac{3}{\sqrt{\dfrac{9}{z^2}+9}}=\dfrac{x}{\sqrt{x^2+1}}+\dfrac{y}{\sqrt{y^2+1}}+\dfrac{z}{\sqrt{z^2+1}}\)

\(Q=\dfrac{x}{\sqrt{x^2+xy+yz+zx}}+\dfrac{y}{\sqrt{y^2+xy+yz+zx}}+\dfrac{z}{\sqrt{z^2+xy+yz+zx}}\)

\(Q=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}}+\dfrac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\)

\(Q\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)=\dfrac{3}{2}\)

\(Q_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(\left(a;b;c\right)=\left(\sqrt{3};2\sqrt{3};3\sqrt{3}\right)\)

6 tháng 11 2022

6 tháng 11 2022