K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

mong mn giúp mk vs

29 tháng 7 2017

It's really.. can be solved ?

4 tháng 8 2017

Bác kiếm bài này ở đâu thế.

AH
Akai Haruma
Giáo viên
27 tháng 8 2021

Lời giải:
Theo hệ quả quen thuộc của bđt AM-GM:
$(a+b+c)^2\leq 3(a^2+b^2+c^2)\leq 9$

$\Rightarrow a+b+c\leq 3$ (đpcm)

Từ đây ta có:

\(E\leq \frac{a}{\sqrt[3]{(a+b+c)a+bc}}+\frac{b}{\sqrt[3]{(a+b+c)b+ac}}+\frac{c}{\sqrt[3]{c(a+b+c)+ab}}\)

\(=\frac{a}{\sqrt[3]{(a+b)(a+c)}}+\frac{b}{\sqrt[3]{(b+c)(b+a)}}+\frac{c}{\sqrt[3]{(c+a)(c+b)}}\)

\(\leq \frac{\sqrt[3]{2}}{3}(\frac{a}{2}+\frac{a}{a+b}+\frac{a}{a+c})+\frac{\sqrt[3]{2}}{3}(\frac{b}{2}+\frac{b}{b+a}+\frac{b}{b+c})+\frac{\sqrt[3]{2}}{3}(\frac{c}{2}+\frac{c}{c+a}+\frac{c}{c+b})\)

\(=\frac{\sqrt[3]{2}(a+b+c)}{6}+\frac{\sqrt[3]{2}}{3}(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a})\leq \frac{3\sqrt[3]{2}}{2}\)

Vậy.................

NV
26 tháng 8 2021

\(3\ge a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\Rightarrow a+b+c\le3\)

\(\Rightarrow\dfrac{a}{\sqrt[3]{3a+bc}}\le\dfrac{a}{\sqrt[3]{a\left(a+b+c\right)+bc}}=\sqrt[3]{2}.\sqrt[3]{\dfrac{a}{a+b}.\dfrac{a}{a+c}.\dfrac{a}{2}}\le\dfrac{\sqrt[3]{2}}{3}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{a}{2}\right)\)

Cộng vế và rút gọn:

\(E\le\dfrac{\sqrt[3]{2}}{3}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{a+b+c}{2}\right)\)

\(E\le\dfrac{\sqrt[3]{2}}{3}\left(3+\dfrac{3}{2}\right)=\dfrac{3\sqrt[3]{2}}{2}\)

25 tháng 2 2022

Ta có : \(9=a^2+a^2+b^2+a^2+b^2+bc+bc+c^2+c^2\ge9\sqrt[9]{a^6\cdot b^6\cdot c^6}=9\sqrt[3]{a^2\cdot b^2\cdot c^2}\Rightarrow abc\le1\) Áp dụng bđt Cô-si vào các số dương : \(a^2+\dfrac{1}{b^2}+\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge4\sqrt[4]{\dfrac{a^2}{b^6}}=4\sqrt{\dfrac{a}{b^3}}\Rightarrow\sqrt{a^2+\dfrac{3}{b^2}}\ge2\cdot\sqrt[4]{\dfrac{a}{b^3}}\)  

CM tương tự ta được: \(\sqrt{b^2+\dfrac{3}{c^2}}\ge2\sqrt[4]{\dfrac{b}{c^3}};\sqrt{c^2+\dfrac{3}{a^2}}\ge2\sqrt[4]{\dfrac{c}{a^3}}\Rightarrow P\ge2\cdot\left(\sqrt[4]{\dfrac{a}{b^3}}+\sqrt[4]{\dfrac{b}{c^3}}+\sqrt[4]{\dfrac{c}{a^3}}\right)\ge2\cdot3\cdot\sqrt[12]{\dfrac{a}{b^3}\cdot\dfrac{b}{c^3}\cdot\dfrac{c}{a^3}}=6\sqrt[12]{\dfrac{1}{\left(abc\right)^2}}=6\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

25 tháng 2 2022

Em cám ơn thầy đã giúp đỡ ạ!

 

24 tháng 12 2018

bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay

24 tháng 12 2018

Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến

20 tháng 5 2018

Ta có: \(P=\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)

\(=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}+\dfrac{ca}{\sqrt{\left(a+b+c\right)b+ca}}+\dfrac{ab}{\sqrt{\left(a+b+c\right)+ab}}\)\(=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}+\dfrac{ca}{\sqrt{ab+b^2+bc+ca}}+\dfrac{ab}{\sqrt{c^2+ac+ab+bc}}\)\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{ca}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\)\(\le\dfrac{1}{2}\left(\dfrac{b^2}{a+b}+\dfrac{c^2}{a+c}+\dfrac{c^2}{b+c}+\dfrac{a^2}{a+b}+\dfrac{a^2}{a+c}+\dfrac{b^2}{b+c}\right)\)

(Theo BĐT cauchy với \(a,b,c>0\) )

\(\le\dfrac{1}{2}\left(\dfrac{\left(2a+2b+2c\right)^2}{4\left(a+b+c\right)}\right)=\dfrac{1}{2}.\left(\dfrac{6^2}{4.3}\right)=\dfrac{3}{2}\)

(theo BĐT cauchy schwarz)

Vậy Max P =\(\dfrac{3}{2}\Leftrightarrow a=b=c=1\)

20 tháng 5 2018

Hình như bạn áp dụng BĐT.Cauchy Schwarz sai

AH
Akai Haruma
Giáo viên
10 tháng 2 2018

Lời giải:

Từ \(ab+bc+ac=1\Rightarrow a^2+ab+bc+ac=a^2+1\)

\(\Leftrightarrow (a+b)(a+c)=a^2+1\)

Tương tự: \(\left\{\begin{matrix} b^2+1=(b+c)(b+a)\\ c^2+1=(c+a)(c+b)\end{matrix}\right.\)

Khi đó:

\(A=\frac{(b^2+bc)(c^2+ca)(a^2+ab)}{\sqrt{(a^4+a^2)(b^4+b^2)(c^4+c^2)}}\) \(=\frac{b(b+c)c(c+a)a(a+b)}{\sqrt{a^2b^2c^2(a^2+1)(b^2+1)(c^2+1)}}\)

\(=\frac{abc(a+b)(b+c)(c+a)}{abc\sqrt{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}}\) \(=\frac{abc(a+b)(b+c)(c+a)}{abc(a+b)(b+c)(c+a)}=1\)

Vậy \(A=1\)

20 tháng 8 2023

Ta có \(ab+bc+ca=3abc\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và 

\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)

Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)

\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)

\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))

\(T\le\dfrac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)

Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)

 (Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)

20 tháng 8 2023

 Bạn Lê Song Phương xem lại dùm nhé, thanks!

\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)

\(...\Rightarrow T\le2.3=6\)

\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)