K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0

a) Xét tứ giác SAOB có 

\(\widehat{SAO}+\widehat{SBO}=180^0\left(90^0+90^0=180^0\right)\)

nên SAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

SA là tiếp tuyến có A là tiếp điểm(gt)

SB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: SA=SB(Tính chất hai tiếp tuyến cắt nhau)

Ta có: SA=SB(cmt)

nên S nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OA=OB(=R)

nên O nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra SO là đường trung trực của AB

hay SO\(\perp\)AB(Đpcm)

28 tháng 6 2021

b) đề phải là \(SA^2=SD.SE\) chứ SD không bằng SE sao \(SD^2=SD.SE\) được

Vì AE là đường kính \(\Rightarrow\angle ADE=90\) mà \(\angle SAE=90\)

\(\Rightarrow\Delta SAE\) vuông tại A có AD là đường cao

\(\Rightarrow SA^2=SD.SE\)

c) Trong (O) có DE là dây cung không đi qua O và I là trung điểm DE

\(\Rightarrow OI\bot DE\Rightarrow\angle OIS=90\Rightarrow\angle OIS=\angle OBS=90\)

\(\Rightarrow OIBS\) nội tiếp mà SAOB nội tiếp (câu a)

\(\Rightarrow O,I,A,S,B\) cùng thuộc 1 đường tròn

\(\Rightarrow AIBS\) nội tiếp \(\Rightarrow\angle AIS=\angle ABS=\angle SAB\) (\(\Delta SAB\) cân tại S)

Xét \(\Delta SAK\) và \(\Delta SIA:\) Ta có: \(\left\{{}\begin{matrix}\angle SIA=\angle SAK\\\angle ISAchung\end{matrix}\right.\)

\(\Rightarrow\Delta SAK\sim\Delta SIA\left(g-g\right)\Rightarrow\dfrac{SA}{SI}=\dfrac{SK}{SA}\Rightarrow SA^2=SK.SI\)

mà \(SA^2=SD.SE\Rightarrow SD.SE=SK.SI\)

d) AB cắt OI tại F'

Vì AE là đường kính \(\Rightarrow\angle ABE=90\Rightarrow F'BE=90\)

\(\Rightarrow\angle F'BE=\angle F'IE\Rightarrow F'BIE\) nội tiếp \(\Rightarrow\angle ABI=\angle F'EI\)

mà \(\angle ABI=\angle ASI\) (AIBS nội tiếp) \(=\angle ASE\)

\(\Rightarrow\angle F'EI+\angle AES=\angle ASE+\angle AES=90\)

\(\Rightarrow\angle F'EO=90\Rightarrow EF'\) là tiếp tuyến \(\Rightarrow\) đpcm

undefined

 

 

20 tháng 12 2017

A B O C H D E F K M I J

Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.

Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.

Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.

Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.

Ta có KF // AJ nên áp dụng Ta let ta có:

\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)

Do AB = BJ nên KM = MF.

24 tháng 12 2018

O A B x y C C E F D I H K

a, Theo t/c tiếp tuyến của đường tròn

 EA = EC

 FC = FB

=>  EC + CF = EA + BF

=> EF  = AE + BF

b, Xét \(\Delta\)ABC có OA = OB = OC (bán kính)

=> \(\Delta\)ABC vuông tại C

=> AC \(\perp\)BC

Xét \(\Delta\)DAB vuông tại  A có AC là đường cao

=> \(AD^2=DC.DB\)(Hệ thức lượng)

c,Chưa ra, mai nghĩ ra thì giải cho ^^