K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 9 2021

Lời giải:
$\text{VT}=\sum \frac{a^2}{a+b^2}=\sum (a-\frac{ab^2}{a+b^2})$

$=\sum a-\sum \frac{ab^2}{a+b^2}$

$\geq \sum a-\sum \frac{ab^2}{2b\sqrt{a}}$ (theo BĐT AM-GM)

$=\sum a-\frac{1}{2}\sum \sqrt{ab^2}$

$\geq \sum a-\frac{1}{2}\sum \frac{ab+b}{2}$ (AM-GM)

$=\frac{3}{4}\sum a-\frac{1}{4}\sum ab$

Giờ ta chỉ cần cm $\sum a\geq \sum ab$ là bài toán được giải quyết

Thật vậy:
Đặt $\sum ab=t$ thì hiển nhiên $0< t\leq 3$ theo BĐT AM-GM

$(\sum a)^2-(\sum ab)^2=3+2t-t^2=(3-t)(t+1)\geq 0$ với mọi $0< t\leq 3$

$\Rightarrow \sum a\geq \sum ab$

Vậy ta có đcpcm.

Dấu "=" xảy ra khi $a=b=c$

18 tháng 5 2023

Ta có \(a+b^2\le\dfrac{a^2+1}{2}+b^2=\dfrac{a^2+2b^2+1}{2}\)

\(\Rightarrow\dfrac{2a^2}{a+b^2}\ge\dfrac{4a^2}{a^2+2b^2+1}=\dfrac{4a^4}{a^4+2b^2a^2+a^2}\). Lập 2 BĐT tương tự rồi áp dụng bất đẳng thức BCS, ta có:

\(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge\dfrac{\left(2a^2+2b^2+2c^2\right)^2}{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\) \(=\dfrac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2+3}\)\(=\dfrac{4.3^2}{3^2+3}=3\).

Mà \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\) nên ta có đpcm. ĐTXR \(\Leftrightarrow a=b=c=1\)

NV
18 tháng 9 2021

\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)

\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)

\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

18 tháng 9 2021

Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ 

NV
22 tháng 10 2021

\(b+c\le\sqrt{2\left(b^2+c^2\right)}\Rightarrow\dfrac{a^2}{b+c}\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}=\dfrac{1}{\sqrt{2}}.\dfrac{a^2}{\sqrt{b^2+c^2}}\)

Sau đó làm tiếp như bài đó là được

22 tháng 10 2021

Nguyễn Việt Lâm Giáo viên, áp dụng BĐT gì vậy bn??

NV
19 tháng 4 2022

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

19 tháng 4 2022

à mình quên < hặc =1/2

4 tháng 6 2018

\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)

Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*

14 tháng 1 2021

\(VT\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)

NV
22 tháng 10 2021

\(P\sqrt{2}\ge\dfrac{a^2}{\sqrt{b^2+c^2}}+\dfrac{b^2}{\sqrt{c^2+a^2}}+\dfrac{c^2}{\sqrt{a^2+b^2}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2011}\\a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{z^2+x^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)

\(\Rightarrow P2\sqrt{2}\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)

\(P4\sqrt{2}\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)

\(P2\sqrt{2}\ge\dfrac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}-\left(x+y+z\right)=x+y+z=\sqrt{2011}\)

\(\Rightarrow P\ge\dfrac{\sqrt{2011}}{2\sqrt{2}}\)

Đề sai

23 tháng 9 2021

Áp dụng BĐT Cosi:

\(\dfrac{a}{\sqrt{b^2+ab}}=\dfrac{a\sqrt{2}}{\sqrt{2\left(b^2+ab\right)}}=\dfrac{a\sqrt{2}}{\sqrt{2b\left(a+b\right)}}\ge\dfrac{a\sqrt{2}}{\dfrac{2b+a+b}{2}}=\dfrac{2\sqrt{2}a}{a+3b}\)

Cmtt: \(\dfrac{b}{\sqrt{c^2+bc}}\ge\dfrac{2\sqrt{2}b}{b+3c};\dfrac{c}{\sqrt{a^2+ca}}\ge\dfrac{2\sqrt{2}c}{c+3a}\)

\(\Leftrightarrow P\ge2\sqrt{2}\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\\ \Leftrightarrow\dfrac{P}{\sqrt{2}}\ge2\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\\ \Leftrightarrow\dfrac{P}{\sqrt{2}}\ge\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}\\ \Leftrightarrow\dfrac{P}{\sqrt{2}}\ge\dfrac{2}{\dfrac{4}{3}}=\dfrac{3}{2}\\ \Leftrightarrow P\ge\dfrac{3\sqrt{2}}{2}\)

Dấu \("="\Leftrightarrow a=b=c\)

23 tháng 9 2021

từ dòng thứ 4 lm sao suy ra dòng thứ 5 thế ạ