K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

xét hiệu \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{a+b}{ab}-\frac{4}{a+b}\)

\(=\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\)

\(=\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\)

\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)

vì (a-b)2>=0

mà a,b>0 nên ab>0;a+b>0

\(\Rightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}-\frac{4}{ab}\ge0\)

hay \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{ab}\left(dpcm\right)\)

30 tháng 3 2017

Từ BĐT trên ,ta có:

\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\) \(\geq\) \(\dfrac{4}{a+b}\)

\(\Leftrightarrow\) \(\dfrac{a+b}{ab}\) \(\geq\) \(\dfrac{4}{a+b}\)

\(\Leftrightarrow\) (a+b)(a+b) \(\geq\) 4ab

\(\Leftrightarrow\) (a+b)2 \(\geq\) 4ab

\(\Leftrightarrow\) a2 +2ab+b2\(\geq\) 4ab

\(\Leftrightarrow\) a2+2ab+b2-4ab \(\geq\) 0

\(\Leftrightarrow\) a2-2ab+b2 \(\geq\) 0

\(\Leftrightarrow\) (a-b)2 \(\geq\) 0 (luôn đúng)

Dấu '=' xảy ra khi và chỉ khi a=b

Từ đó ta chứng minh được BĐT : \(\dfrac{1}{a}\) +\(\dfrac{1}{b}\)\(\geq\) \(\dfrac{4}{a+b}\)

31 tháng 3 2017

\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{a+b}{ab}=\dfrac{\left(a+b\right)^2}{ab\left(a+b\right)}\) (1)

\(\dfrac{4}{a+b}=\dfrac{4ab}{ab\left(a+b\right)}\) (2)

ta có:

\(\left(a+b\right)^2\ge\left(a-b\right)^2\)\(\left(a-b\right)^2\ge4ab\)

nên \(\left(a+b\right)^2\ge4ab\) (3)

từ (1), (2) và (3) suy ra \(\dfrac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\dfrac{4ab}{ab\left(a+b\right)}\) hay \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)(đpcm)

1/a+1/b>=2/căn ab

a+b>=2căn ab

=>(1/a+1/b)(a+b)>=4

27 tháng 6 2016

Áp dụng BĐT Shur  ta có: \(\frac{1}{a}+\frac{1}{b}\ge\)\(\frac{\left(1+1\right)^2}{a+b}\)=\(\frac{4}{a+b}\)

Dấu = khi a=b

27 tháng 6 2016

mik nhầm đấy là áp dụng BĐT Schwarz

24 tháng 4 2019

BĐT svac

\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\forall a,b>0\)

7 tháng 8 2017

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\), ta có:

\(\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)

\(\le\dfrac{1}{4}\left(\dfrac{4}{a+b}+\dfrac{4}{a+c}+\dfrac{4}{a+b}+\dfrac{4}{c+b}+\dfrac{4}{a+c}+\dfrac{4}{b+c}\right)\)

\(=\dfrac{2}{a+b}+\dfrac{2}{a+c}+\dfrac{2}{b+c}\)

\(\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{a}+\dfrac{2}{c}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)

\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi a = b = c

28 tháng 2 2016

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow ab+b^2+a^2+ab\ge4ab\left(a,b>0\right)\)

<=>a2+b2-2ab\(\ge\)0

<=>(a-b)2\(\ge\)0(luôn đúng)

=>điều cần chứng minh

28 tháng 2 2016

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)

(a + b) (a + b) \(\ge\) 4ab

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

Mà a,b > 0 nên a + b > 0 

=> \(\left(a+b\right)^2\ge4ab\)

14 tháng 12 2019

\(\frac{1}{a+1}+\frac{1}{b+1}\)

\(=\frac{b+1}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{\left(a+1\right)\left(b+1\right)}\)

\(=\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\)

\(=\frac{3}{ab+a+b+1}\)

\(=\frac{3}{ab+2}\)

22 tháng 1 2022

- Uả vế phải lớn hơn hoặc bằng vế trái chứ nhỉ?