K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

Áp dụng BĐT Shur  ta có: \(\frac{1}{a}+\frac{1}{b}\ge\)\(\frac{\left(1+1\right)^2}{a+b}\)=\(\frac{4}{a+b}\)

Dấu = khi a=b

27 tháng 6 2016

mik nhầm đấy là áp dụng BĐT Schwarz

7 tháng 8 2017

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\), ta có:

\(\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)

\(\le\dfrac{1}{4}\left(\dfrac{4}{a+b}+\dfrac{4}{a+c}+\dfrac{4}{a+b}+\dfrac{4}{c+b}+\dfrac{4}{a+c}+\dfrac{4}{b+c}\right)\)

\(=\dfrac{2}{a+b}+\dfrac{2}{a+c}+\dfrac{2}{b+c}\)

\(\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{a}+\dfrac{2}{c}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)

\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi a = b = c

1 tháng 4 2017

xét hiệu \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{a+b}{ab}-\frac{4}{a+b}\)

\(=\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\)

\(=\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\)

\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)

vì (a-b)2>=0

mà a,b>0 nên ab>0;a+b>0

\(\Rightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}-\frac{4}{ab}\ge0\)

hay \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{ab}\left(dpcm\right)\)

15 tháng 5 2018

\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{2}{c}=0\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{b}=\dfrac{2}{c}-\dfrac{1}{a}=\dfrac{2a-c}{ac}\\\dfrac{1}{a}=\dfrac{2}{c}-\dfrac{1}{b}=\dfrac{2b-c}{bc}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2a-c=\dfrac{ac}{b}\\2b-c=\dfrac{bc}{a}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a+c}{2a-c}=\dfrac{b\left(a+c\right)}{ac}=\dfrac{ab}{ac}+\dfrac{bc}{ac}=\dfrac{b}{c}+\dfrac{b}{a}\\\dfrac{b+c}{2b-c}=\dfrac{a\left(b+c\right)}{bc}=\dfrac{ab}{bc}+\dfrac{ac}{bc}=\dfrac{a}{c}+\dfrac{a}{b}\end{matrix}\right.\)

Áp dụng bđt Cosi cho 2 số sương ta có: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{2}{c}=0\Leftrightarrow\dfrac{2}{c}=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{c}\ge2\)(áp dụng \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\))

Ta có: \(\dfrac{a+c}{2a-c}+\dfrac{b+c}{2b-c}=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\dfrac{a+b}{c}\ge2+2=4\)

Dấu "=" xawy ra khi và chỉ khi a=b=c

30 tháng 3 2017

Từ BĐT trên ,ta có:

\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\) \(\geq\) \(\dfrac{4}{a+b}\)

\(\Leftrightarrow\) \(\dfrac{a+b}{ab}\) \(\geq\) \(\dfrac{4}{a+b}\)

\(\Leftrightarrow\) (a+b)(a+b) \(\geq\) 4ab

\(\Leftrightarrow\) (a+b)2 \(\geq\) 4ab

\(\Leftrightarrow\) a2 +2ab+b2\(\geq\) 4ab

\(\Leftrightarrow\) a2+2ab+b2-4ab \(\geq\) 0

\(\Leftrightarrow\) a2-2ab+b2 \(\geq\) 0

\(\Leftrightarrow\) (a-b)2 \(\geq\) 0 (luôn đúng)

Dấu '=' xảy ra khi và chỉ khi a=b

Từ đó ta chứng minh được BĐT : \(\dfrac{1}{a}\) +\(\dfrac{1}{b}\)\(\geq\) \(\dfrac{4}{a+b}\)

31 tháng 3 2017

\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{a+b}{ab}=\dfrac{\left(a+b\right)^2}{ab\left(a+b\right)}\) (1)

\(\dfrac{4}{a+b}=\dfrac{4ab}{ab\left(a+b\right)}\) (2)

ta có:

\(\left(a+b\right)^2\ge\left(a-b\right)^2\)\(\left(a-b\right)^2\ge4ab\)

nên \(\left(a+b\right)^2\ge4ab\) (3)

từ (1), (2) và (3) suy ra \(\dfrac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\dfrac{4ab}{ab\left(a+b\right)}\) hay \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)(đpcm)

1/a+1/b>=2/căn ab

a+b>=2căn ab

=>(1/a+1/b)(a+b)>=4

20 tháng 1 2019

Vì a,b,c > 0 và a+b+c=1

=> 0 < a,b,c < 1

=> 1-a, 1-b, 1-c > 0

Áp dụng bất đẳng thức cô-si cho các số dương ta có:

\(VP=4\left(1-a\right)\left(1-b\right)\left(1-c\right)\le4\cdot\dfrac{\left[\left(1-a\right)+\left(1-c\right)\right]^2}{4}\cdot\left(1-b\right)\)

\(=\left(2-a-c\right)^2\left(1-b\right)\)

\(=\left[2\left(a+b+c\right)-a-c\right]^2\left(1-b\right)\)

\(=\left(a+2b+c\right)^2\left(1-b\right)=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)< b+1=a+2b+c=VT\)

Vậy VT > VP. Dấu "=" không xảy ra