K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 5 2019

\(2\sqrt{xy}\le x+y\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)

\(A=xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\ge2\sqrt{\frac{xy}{16xy}}+\frac{15}{16}.4=\frac{17}{4}\)

\(\Rightarrow A_{min}=\frac{17}{4}\) khi \(x=y=\frac{1}{2}\)

b/ \(2y=xy-x=x\left(y-1\right)\Rightarrow x=\frac{2y}{y-1}=2+\frac{2}{y-1}\)

Đồng thời \(x;y>0\Rightarrow2y=x\left(y-1\right)>0\Rightarrow y-1>0\)

\(\Rightarrow S=2+\frac{2}{y-1}+2y=4+\frac{2}{y-1}+2\left(y-1\right)\ge4+2\sqrt{\frac{4\left(y-1\right)}{y-1}}=8\)

\(\Rightarrow S_{min}=8\) khi \(\frac{2}{y-1}=2\left(y-1\right)\Rightarrow y=2\Rightarrow x=4\)

NV
21 tháng 5 2019

c/ \(x+y+xy\ge7\Leftrightarrow x\left(y+1\right)\ge7-y\Leftrightarrow x\ge\frac{7-y}{y+1}=\frac{8}{y+1}-1\)

\(\Rightarrow S=x+2y\ge2y+\frac{8}{y+1}-1=2\left(y+1\right)+\frac{8}{y+1}-3\)

\(\Rightarrow S\ge2\sqrt{\frac{16\left(y+1\right)}{y+1}}-3=5\)

\(\Rightarrow S_{min}=5\) khi \(\left\{{}\begin{matrix}y=1\\x=5\end{matrix}\right.\)

NV
5 tháng 2 2020

\(y\left(x+1\right)\ge7-x\Rightarrow y\ge\frac{7-x}{x+1}\)

\(\Rightarrow S\ge x+\frac{2\left(7-x\right)}{x+1}=x+1+\frac{16}{x+1}-3\ge2\sqrt{\frac{16\left(x+1\right)}{x+1}}-3=5\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

NV
12 tháng 3 2021

\(B=\dfrac{1}{x^3+y^3}+\dfrac{1}{xy\left(x+y\right)}=\dfrac{1}{x^3+y^3}+\dfrac{3}{3xy\left(x+y\right)}\)

\(B\ge\dfrac{\left(1+\sqrt{3}\right)^2}{x^3+y^3+3xy\left(x+y\right)}=\dfrac{4+2\sqrt{3}}{\left(x+y\right)^3}=4+2\sqrt{3}\)

\(B_{min}=4+2\sqrt{3}\) khi \(\left(x;y\right)=\left(\dfrac{3+\sqrt{3}-\sqrt[4]{12}}{6+2\sqrt{3}};\dfrac{3+\sqrt{3}+\sqrt[4]{12}}{6+2\sqrt{3}}\right)\) và hoán vị

 

AH
Akai Haruma
Giáo viên
12 tháng 3 2021

Lời giải:

Áp dụng BĐT Cauchy-Shwarz:

$B=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{(x+y)^3-3xy(x+y)}+\frac{1}{xy}$

$=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}$

$\geq \frac{(1+\sqrt{3})^2}{1-3xy+3xy}=(1+\sqrt{3})^2$

Vậy $B_{\min}=(1+\sqrt{3})^2$

Dấu "=" xảy ra khi $xy=\frac{1}{2}-\frac{1}{2\sqrt{3}}$

16 tháng 2 2020

Đặt \(x^2+y^2=a;xy=b\) \(\Rightarrow a-b=1\Leftrightarrow b=a-1\)

Từ giả thiết:\(x^2+y^2-xy=1\Leftrightarrow x^2+y^2+\left(x-y\right)^2=2\ge x^2+y^2\)

Và \(2x^2+2y^2=2xy+2\Leftrightarrow3\left(x^2+y^2\right)=\left(x+y\right)^2+2\ge2\)\(\Leftrightarrow x^2+y^2\ge\frac{2}{3}\)

Suy ra:\(\frac{2}{3}\le a\le2\)

Ta có:\(x^4+y^4-x^2y^2=\left(x^2+y^2\right)^2-3x^2y^2=a^2-3b^2=-2a^2+6a-3\)

Đến đây vẽ bảng biến thiên ra :)) 

1 tháng 4 2022

\(x+2y=6\)

\(\Leftrightarrow\dfrac{6}{2}=\dfrac{x}{2}+y\)

\(P+\dfrac{6}{2}=\dfrac{8}{x}+\dfrac{1}{y}+\dfrac{x}{2}+y\)

\(\Leftrightarrow P+\dfrac{6}{2}=\left(\dfrac{8}{x}+\dfrac{1}{y}\right)+\left(\dfrac{1}{y}+y\right)\)

vì x;y là số thực dương ,áp dụng BĐT Côsi ta có :

\(\dfrac{8}{x}+\dfrac{x}{2}=2\sqrt{\dfrac{8}{x}+\dfrac{x}{2}}=2\sqrt{4}=2.2=4\)

\(\dfrac{1}{y}+y=2\sqrt{\dfrac{1}{y}+y}=2\sqrt{1}=2.1=2\)

nên \(P+\dfrac{6}{2}\ge6\)

\(\Leftrightarrow P\ge6-\dfrac{6}{2}\)

\(\Leftrightarrow P\ge3\)

vậy \(P_{min}=3\)

NV
21 tháng 4 2021

\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)

\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)