K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

\(A=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\)\(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)

\(=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\right)\)\(:\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)

\(=\frac{2\left(2\sqrt{x}+1\right)+3\left(\sqrt{x}-2\right)-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\)\(:\frac{2\sqrt{x}+3}{5\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\)\(.\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\frac{2\sqrt{x}+3}{2\sqrt{x}+1}.\frac{5\sqrt{x}}{2\sqrt{x}+3}=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)

\(A\in Z\Leftrightarrow\frac{5\sqrt{x}}{2\sqrt{x}+1}\in Z\Leftrightarrow\frac{10\sqrt{x}}{2\sqrt{x}+1}\in Z\)

\(\Rightarrow\frac{10\sqrt{x}+5-5}{2\sqrt{x}+1}\in Z\Leftrightarrow5-\frac{5}{2\sqrt{x}+1}\in Z\)

\(\Rightarrow\frac{5}{2\sqrt{x}+1}\in Z\Rightarrow2\sqrt{x}+1\inƯ_5\)

Mà \(Ư_5=\left\{\pm1;\pm5\right\}\)

Nhưng \(2\sqrt{x}+1\ge1\)

\(\Rightarrow\orbr{\begin{cases}2\sqrt{x}+1=1\\2\sqrt{x}+1=5\end{cases}\Rightarrow\orbr{\begin{cases}2\sqrt{x}=0\\2\sqrt{x}=4\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

Vậy \(x\in\left\{0;4\right\}\)

5 tháng 5 2020
https://i.imgur.com/A1Bw3lC.jpg
6 tháng 4 2016

\(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\Leftrightarrow\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)=\left(1-x\right)\left(1-y\right)\left(1\right)\)

Ta có : \(\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)\ge4xy\)

và \(\left(1-x\right)\left(1-y\right)=1-\left(x+y\right)+xy\le1-2\sqrt{xy}+xy\)

\(\Rightarrow1-2\sqrt{xy}+xy\ge4xy\Leftrightarrow0\) <\(xy\le\frac{1}{9}\)

Dễ chứng minh : \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{1}{1+xy};\left(x,y\in\left(0;1\right)\right)\)

\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\le\sqrt{2\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right)}\le\sqrt{2\left(\frac{2}{1+xy}\right)}=\frac{2}{\sqrt{1+xy}}\)

\(3xy-\left(x^2+y^2\right)=xy-\left(x-y\right)^2\le xy\)

\(\Rightarrow P\le\frac{2}{\sqrt{1+xy}}+xy=\frac{2}{\sqrt{1+t}}+t\)\(\left(t=xy\right)\), (0<\(t\le\frac{1}{9}\)

Xét hàm số :

\(f\left(t\right)=\frac{2}{\sqrt{t+1}}+t\) ,  (0<\(t\le\frac{1}{9}\)

Ta có Max \(f\left(t\right)=f\left(\frac{1}{9}\right)=\frac{6\sqrt{10}}{10}+\frac{1}{9}\)\(t\in\left(0;\frac{1}{9}\right)\)