K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

Xét \(xy>1\)

Ta chứng minh: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}-\frac{2}{1+xy}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(xy-1\right)\ge0\)(đúng)

Dấu = xảy ra khi \(x=y\) (loại)

Xét \(xy< 1\)

Ta chứng minh: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}-\frac{2}{1+xy}\le0\)

\(\Leftrightarrow\left(x-y\right)^2\left(xy-1\right)\le0\)(đúng)

Dấu = xảy ra khi \(x=y\) (loại)

Từ (1) và (2) \(\Rightarrow xy=1\)

\(\Rightarrow P=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{2}{1+xy}=\frac{4}{1+xy}=\frac{4}{2}=2\)

26 tháng 7 2019

vừa lên lớp 8 đã bị hack não rồi k bt có học đc k đây

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

a)

Coi đây là pt bậc hai ẩn $y$. Để pt có nghiệm nguyên thì:

$\Delta'=x^2+3x+2=t^2$ với $t\in\mathbb{Z}$)

$\Rightarrow 4x^2+12x+8=4t^2$

$\Leftrightarrow (2x+3)^2-1=(2t)^2$

$\Leftrightarrow 1=(2x+3-2t)(2x+3+2t)$

Xét 2 TH sau:

TH1: $2x+3-2t=2x+3+2t=1$

$\Rightarrow x=-1; y=1$

TH2: $2x+3-2t=2x+3+2t=-1$

$\Rightarrow x=-2; y=2$

Vậy.......

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

b) Ta có:

\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)

\(\Leftrightarrow \frac{x^2+y^2+2}{x^2+y^2+x^2y^2+1}\geq \frac{2}{xy+1}\)

\(\Leftrightarrow (x^2+y^2+2)(xy+1)\geq 2(x^2+y^2+x^2y^2+1)\)

\(\Leftrightarrow xy(x^2+y^2-2xy)-(x^2+y^2-2xy)\geq 0\)

$\Leftrightarrow (x-y)^2(xy-1)\geq 0$

Luôn đúng với mọi $xy\geq 1$

Ta có đpcm.

Dấu "=" xảy ra khi $x=y$ hoặc $xy=1$

24 tháng 3 2020

Theo bài ra ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\Rightarrow x+y+z=xyz\)

Do:\(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự: \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\);

\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(z+y\right)\left(x+y\right)}\)

\(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\)

\(A=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng bất đẳng thức Cô si \(\frac{a+b}{2}\ge\sqrt{ab}\), dấu "=" xảy ra khi \(a=b\)

Ta có \(\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\);

\(\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\);

\(\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\le\frac{1}{2}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(A\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{y+x}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy \(A\le\frac{3}{2}\). Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

24 tháng 3 2020

M giải thích cho t chỗ sao mà \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\) đc vậy?

Với cả từ dòng này xuống dòng này nữa.

Violympic toán 8

Sao mà tin đc dấu " = " xảy ra khi nào vậy?

Violympic toán 8

NV
17 tháng 5 2020

a/ \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(1+xy\right)\left(2+x^2+y^2\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)

\(\Leftrightarrow2+x^2+y^2+2xy+xy\left(x^2+y^2\right)\ge2+2x^2+2y^2+2x^2y^2\)

\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2+y^2-2xy\right)\ge0\)

\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) (luôn đúng)

b/ Để biểu thức xác định \(\Rightarrow x\ne0\Rightarrow x^2\ge1\)

\(4=\frac{y^2}{4}+x^2+\frac{1}{x^2}+x^2\ge\frac{y^2}{4}+2\sqrt{\frac{x^2}{x^2}}+1\ge\frac{y^2}{4}+3\)

\(\Rightarrow\frac{y^2}{4}\le1\Rightarrow y^2\le4\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\\y^2=4\end{matrix}\right.\)

\(y^2=0\Rightarrow2x^2+\frac{1}{x^2}=4\Rightarrow2x^4-4x^2+1=0\) (ko tồn tại x nguyên tm)

\(y^2=1\Rightarrow2x^2+\frac{1}{x^2}=3\Rightarrow2x^4-3x^2+1=0\Rightarrow x^2=1\)

\(\Rightarrow\left(x;y\right)=...\)

\(y^2=4\Rightarrow2x^2+\frac{1}{x^2}=0\Rightarrow\) ko tồn tại x thỏa mãn

17 tháng 5 2020

tks nha

12 tháng 3 2020

1/\(\Leftrightarrow P=\frac{2}{x}-\left(\frac{x^2y}{xy\left(x+y\right)}+\frac{\left(y^2-x^2\right)\left(x+y\right)}{xy\left(x+y\right)}-\frac{xy^2}{xy\left(x+y\right)}\right).\frac{x+y}{x^2+xy+y^2}\)

\(\Leftrightarrow P=\frac{2}{x}-\frac{x^2y+xy^2+y^3-x^3-x^2y-xy^2}{xy\left(x+y\right)}.\frac{x+y}{x^2+xy+y^2}\)

\(\Leftrightarrow P=\frac{2}{x}-\frac{\left(y-x\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}.\frac{x+y}{x^2+xy+y^2}\)

\(\Leftrightarrow P=\frac{2y}{xy}-\frac{y-x}{xy}\)

\(\Leftrightarrow P=\frac{x+y}{xy}\)

6 tháng 4 2020

*Áp dụng Cosi với x,y>0 ta có:

\(x+y\ge2\sqrt{xy}\left(1\right)\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\left(2\right)\)

Nhân (1),(2) có: \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\RightarrowĐPCM\)

**\(\frac{1}{xy}+\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}+\frac{1}{x^2+y^2}\)

Ta có: \(\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}\ge\frac{4}{x^2+2xy+y^2}=4\)


6 tháng 4 2020

Có: \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{\left(x+y\right)^2}\le4\)

Theo Cosi ta có: \(xy\le\left(\frac{x+y}{2}\right)^2\)

\(\Rightarrow\frac{1}{xy}\ge\left(\frac{2}{x+y}\right)^2\ge\left(\frac{2}{1}\right)^2=4\)

Áp dụng Cosi ta có: \(2xy\left(x^2+y^2\right)\le\left(\frac{x^2+2xy+y^2}{2}\right)^2=\frac{\left(x+y\right)^4}{4}\le\frac{1}{4}\)

\(\Rightarrow xy\left(x^2+y^2\right)\le\frac{1}{8}\)(1)

Mà ta có ở trên: \(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{1}{4}\)(2)

Từ (1) và (2) ta có: \(x^2+y^2\le\frac{1}{2}\Rightarrow\frac{1}{x^2+y^2}\ge2\)

Vậy Ta có: \(\frac{1}{xy}+\frac{1}{x^2+xy}+\frac{1}{y^2+xy}+\frac{1}{x^2+y^2}\ge4+4+2=10\)

Với x=y=1/2