K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2020

t nghĩ đề phải bổ sung là a,b,c > 0 nữa.

Bất đẳng thức đã cho tương đương với :

\(\frac{2\left(a^3+b^3+c^3\right)}{abc}-6+\frac{9\left(a+b+c\right)^2}{a^2+b^2+c^2}-27\ge0\)

\(\Leftrightarrow\frac{2\left(a^3+b^3+c^3-3abc\right)}{abc}+\frac{9\left(a^2+b^2+c^2+2ab+2bc+2ac\right)-27\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\ge0\)

\(\Leftrightarrow\frac{2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{abc}-\frac{18\left(a^2+b^2+c^2-ab-bc-ac\right)}{a^2+b^2+c^2}\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)\left(\frac{a+b+c}{abc}-\frac{9}{a^2+b^2+c^2}\right)\ge0\)

\(\Leftrightarrow\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left[\left(a+b+c\right)\left(a^2+b^2+c^2\right)-9abc\right]\ge0\)

cần chứng minh \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)-9abc\ge0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc+a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-6abc\ge0\)

Ta thấy \(a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

\(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)-6abc=a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)

Dấu bằng xảy ra khi a = b = c

1 tháng 2 2020

Thanh Tùng DZ Sao anh ko dùng co si cho nhanh để cm cái bđt cuối ??
\(a+b+c\ge3\sqrt[3]{abc};a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\Rightarrowđpcm\)

9 tháng 12 2018

\(BDT\Leftrightarrow2\left[\dfrac{a^3+b^3+c^2}{abc}-3\right]+9\left[\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2}-3\right]\ge0\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)\sum\left(a-b\right)^2}{abc}+\dfrac{-9\sum\left(a-b\right)^2}{a^2+b^2+c^2}\ge0\)

\(\Leftrightarrow\sum\left(a-b\right)^2\left(\dfrac{a+b+c}{abc}-\dfrac{9}{a^2+b^2+c^2}\right)\ge0\)

\(\Leftrightarrow\sum\left(a-b\right)^2.\dfrac{\sum\left(a-b\right)^2.\left(a+b+3c\right)}{2abc\left(a^2+b^2+c^2\right)}\ge0\) (đúng)

7 tháng 9 2017

Ta chứng minh bổ đề:

\(\left(x+\frac{1}{x}\right)^2\ge\frac{260}{9}-\frac{160x}{3}\)

\(\Leftrightarrow\frac{9x^4+480x^3-242x^2+9}{9x^2}\ge0\)

\(\Leftrightarrow\frac{\left(3x-1\right)^2\left(x^2+54x+9\right)}{9x^2}\ge0\)(đúng)

Áp dụng vào bài toán ta được.

\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)

\(\ge\frac{260}{9}-\frac{160a}{3}+\frac{260}{9}-\frac{160b}{3}+\frac{260}{9}-\frac{160c}{3}\)

\(=\frac{260}{3}-\frac{160}{3}\left(a+b+c\right)=\frac{260}{3}-\frac{160}{3}=\frac{100}{3}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

áp dụng bunhia ta có:

\(\left(1+1+1\right)\left[\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\right]\ge\left(a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\right)^2\)

\(\ge\left(1+\frac{9}{a+b+c}\right)^2=100\)

\(\Rightarrow3\left[\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\right]\ge100\)

\(\Rightarrow\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\ge\frac{100}{3}\left(Q.E.D\right)\)

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)

30 tháng 12 2019

a) \(S=\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)^2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)

\(\Leftrightarrow\frac{3\left(a^4+b^4+c^4\right)-\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2}-\frac{a^2+b^2+c^2-ab-bc-ca}{a^2+b^2+c^2}\ge0\)

\(\Leftrightarrow\frac{2\Sigma_{cyc}\left(a+b\right)^2\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)^2}-\frac{\Sigma_{cyc}\left(a^2+b^2+c^2\right)\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)^2}\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\left(a^2+4ab+b^2-c^2\right)\left(a-b\right)^2\ge0\)

Giả sử \(a\ge b\ge c\Rightarrow c^2+4ca+a^2-b^2\ge0\)

Ta có: \(VT=\left(a^2+4ab+b^2-c^2\right)\left(a-b\right)^2+\left(b^2+4bc+c^2-a^2\right)\left(b-c\right)^2+\left(c^2+4ca+a^2-b^2\right)\left(a-b+b-c\right)^2\)

\(=\left(2a^2+4ab+4ca\right)\left(a-b\right)^2+\left(2c^2+4ca+4bc\right)\left(b-c\right)^2+\left(c^2+4ca+a^2-b^2\right)\left(a-b\right)\left(b-c\right)\ge0\)Ta có đpcm.

Đẳng thức xảy ra khi \(a=b=c\)

30 tháng 12 2019

b) \(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{abc}-\frac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2}\ge0\)

\(\Leftrightarrow\left(a^2+b^2+c^2-ab-bc-ca\right)\left(\frac{a+b+c}{abc}-\frac{9}{a^2+b^2+c^2}\right)\ge0\) (phân tích cái tử của phân thức thức nhất thành nhân tử rồi nhóm lại)

\(\Leftrightarrow\left[\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b-2c\right)^2\right]\left(\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)-9abc}{abc\left(a^2+b^2+c^2\right)}\right)\ge0\) (đúng)

Đẳng thức xảy ra khi \(a=b=c\)

P/s: Đáng ráng phân tích tiếp cái ngoặc phía sau cho đẹp nhưng lười quá nên thôi:v (dùng Cauchy nó cũng đúng rồi nên phân tích làm gì cho mệt)

16 tháng 2 2020

Em lớp 8, mạn phép làm bài này ạ , có gì sai mong mn chỉ bảo :33

BĐT cần chứng minh 

\(\Leftrightarrow3+\frac{b^2+c^2}{a^2}+\frac{a^2+c^2}{b^2}+\frac{a^2+b^2}{c^2}\ge3+\frac{2\left(a^3+b^3+c^3\right)}{abc}\)

\(\Leftrightarrow\frac{b^2+c^2}{a^2}+\frac{a^2+c^2}{b^2}+\frac{a^2+b^2}{c^2}\ge\frac{2\left(a^3+b^3+c^3\right)}{abc}\) (1)

Ta có : \(VT\left(1\right)\ge\frac{2bc}{a^2}+\frac{2ac}{b^2}+\frac{2ab}{c^2}\ge3\sqrt[3]{\frac{8\left(abc\right)^2}{\left(abc\right)^2}=6}\)

\(VT\left(1\right)\ge\frac{2.3\sqrt[3]{\left(abc\right)^3}}{abc}=6\)

Do đó (1) đúng. (đpcm)

18 tháng 9 2021

Ta có \(a+b+c\ge3\sqrt[3]{abc}=3\)

Áp dụng bđt cosi ta có:

\(\frac{a^3}{\left(b+1\right)\left(c+2\right)}+\frac{b+1}{12}+\frac{c+2}{18}\ge3\sqrt[3]{\frac{a^3}{12.18}}=\frac{a}{2}\)

Làm tương tự

=>\(VT+\left(\frac{a+1}{12}+\frac{a+2}{18}\right)+\left(\frac{b+1}{12}+\frac{b+2}{18}\right)+\left(\frac{c+1}{12}+\frac{c+2}{18}\right)\ge\frac{a+b+c}{2}\)

=> \(VT\ge\frac{13}{36}.\left(a+b+c\right)-\frac{7}{12}\ge\frac{13}{36}.3-\frac{7}{12}=\frac{1}{2}\)(ĐPCM)

21 tháng 9 2021

dấu suy ra thứ 2 phải là lớn hơn hoặc bằng 8(a+b+c)/36-7/12 chứ

18 tháng 12 2019

\(VT=\frac{\left(\sqrt[3]{abc}\right)^2}{2abc}+\Sigma\frac{a^2}{a^2\left(b+c\right)}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\Sigma a^2\left(b+c\right)+2abc}=\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

9 tháng 6 2018

Đặt A=\(\left(\frac{-a}{2}+\frac{b}{3}+\frac{c}{6}\right)^3+\left(\frac{a}{3}+\frac{b}{6}-\frac{c}{2}\right)^3+\left(\frac{a}{6}-\frac{b}{2}+\frac{c}{3}\right)^3\)

\(=\left(\frac{-3a+2b+c}{6}\right)^3+\left(\frac{2a+b-3c}{6}\right)^3+\left(\frac{a-3b+2c}{6}\right)^3\)

\(=\left(\frac{-3a+2b+c+2a+b-3c+a-3b+2c}{6}\right)^3-\frac{\left(-a+3b-2c\right)\left(3a-2b-c\right)\left(-2a-b+3c\right)}{72}\)

(Hằng đẳng thức)

\(=0-\frac{\left(-a+3b-2c\right)\left(3a-2b-c\right)\left(-2a-b+3c\right)}{72}\)

\(\Rightarrow\frac{\left(a-3b+2c\right)\left(-3a+2b+c\right)\left(2a+b-3c\right)}{72}=\frac{1}{8}\)

\(\Leftrightarrow\left(a-3b+2c\right)\left(2a+b-3c\right)\left(-3a+2b+c\right)=9\)(đpcm).