K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2015

tick cho minh rồi mình đố cho có một ong đi qua một cái cầu găp hai đứa nho chặn ổng lai hỏi sao ổng đi qua được gợi ý tên của hai đứa nhỏ đó là chủm  và dả

21 tháng 6 2021

sao mà group có 71 thành viên thế :[

21 tháng 6 2021

Ok luôn 

6 tháng 3 2021

Câu 285

a) ĐKXĐ: $x\le 10.$

 \(PT\Leftrightarrow\left(\dfrac{x^3+7x^2+18x+4}{\sqrt{10-x}}-10\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\dfrac{\left(x^5+15x^4+100x^3+360x^2+740x+984\right)}{\sqrt{10-x}\left(x^3+7x^2+8x+4+10\sqrt{10-x}\right)}+1\right]=0\)

Rõ ràng biểu thức trong ngoặc vuông vô nghiệm.

Vậy $x=1$ (TMĐKXĐ)

b) Đặt $t=ab+bc+ca.$

 \(a,b,c\in\left[0,1\right]\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1.\) (1)

Từ (1) suy ra \(3abc\ge\sum c\left(a+b-1\right)=2t-\left(a+b+c\right)\ge2t-3\)

Cũng do $a,b,c\in \left[0,1\right]$ suy ra \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\Rightarrow abc\le\sum\left(ab-a\right)+1\)

Do đó"\(VT\le\sum\dfrac{a}{1+bc}+\sum\left(ab-a\right)+1\)

\(=\sum\left(\dfrac{a}{1+bc}-a\right)+\sum ab+1\)

\(=-abc\sum\dfrac{1}{1+bc}+ab+bc+ca+1\)

\(\le t+1-\dfrac{9abc}{t+3}\le t+1-\dfrac{3\left(2t-3\right)}{t+3}\le\dfrac{5}{2}\) 

\(\Leftrightarrow\left(2t-3\right)\left(3-t\right)\ge0\)

Do \(t\le\dfrac{\left(a+b+c\right)^2}{3}=3\) nên nếu $ab+bc+ca\ge \dfrac{3}{2}$ thì bất đẳng thức đúng.

Trong trường hợp ngược lại ta có \(VT\le t+1-\dfrac{9abc}{t+3}\le t+1\le\dfrac{3}{2}+1=\dfrac{5}{2}\) (đpcm)

Hoàn tất chứng minh.

Đẳng thức xảy ra khi (bạn đọc tự xét)

6 tháng 3 2021

290

Ta có \(\dfrac{a^4b}{a^2+1}=a^2b-\dfrac{a^2b}{a^2+1}\ge a^2b-\dfrac{a^2b}{2a}=a^2b-\dfrac{ab}{2}\)

Chứng minh tương tự ta được:  

\(\dfrac{b^4c}{b^2+1}\ge b^2c-\dfrac{bc}{2};\dfrac{c^4a}{c^2+1}\ge c^2a-\dfrac{ca}{2}\)

\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{ab}{2}-\dfrac{bc}{2}-\dfrac{ca}{2}\)

Áp dụng bđt Cô-si:

\(a^2b+a^2b+b^2c\ge3\sqrt[3]{a^2b\cdot a^2b\cdot b^2c}=3\sqrt[3]{a^3b^3\cdot abc}=3ab\)

Tương tự: \(b^2c+b^2c+c^2a\ge3bc;c^2a+c^2a+a^2b\ge3ca\)

\(\Rightarrow a^2b+a^2b+b^2c+b^2c+b^2c+c^2a+c^2a+c^2a+a^2b\ge3ab+3bc+3ca\Rightarrow3\left(a^2b+b^2c+c^2a\right)\ge3\left(ab+bc+ca\right)\Rightarrow a^2b+b^2c+c^2a\ge ab+bc+ca\)

\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{1}{2}\left(ab+bc+ca\right)\ge ab+bc+ca-\dfrac{1}{2}\left(ab+bc+ca\right)=\dfrac{1}{2}\left(ab+bc+ca\right)\ge\dfrac{3}{2}\sqrt[3]{\left(abc\right)^2}=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

4 tháng 3 2021

Bài nào đó k ghi số nên không bt gọi ntn:

Chuẩn hóa x + y + z = 3. Ta cần cm \(x^2y+y^2z+z^2x+xyz\le4\).

Giả sử \(z=mid\left\{x,y,z\right\}\Rightarrow\left(x-z\right)\left(y-z\right)\le0\)

\(\Leftrightarrow xy+z^2\le xz+yz\)

\(\Leftrightarrow x^2y+xz^2\le x^2z+xyz\).

Từ đó \(x^2y+y^2z+z^2x+xyz\le x^2z+xyz+y^2z+xyz=z\left(x+y\right)^2\le\dfrac{\dfrac{\left(2z+x+y+x+y\right)^3}{27}}{2}=4\).

 

4 tháng 3 2021

Câu cuối:

Áp dụng BĐT BSC:

\(\dfrac{a}{\sqrt{a^2+b+c}}=\sqrt{\dfrac{a^2}{a^2+b+c}}=\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a^2+b+c\right)\left(1+b+c\right)}}\le\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a+b+c\right)^2}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)

Tương tự \(\dfrac{b}{\sqrt{b^2+c+a}}=\le\dfrac{b\sqrt{1+c+a}}{a+b+c}\)\(\dfrac{c}{\sqrt{c^2+a+b}}=\le\dfrac{c\sqrt{1+a+b}}{a+b+c}\)

Khi đó \(VT\le\Sigma\left(\dfrac{a}{a+b+c}.\sqrt{1+b+c}\right)\)

Giả sử \(a\ge b\ge c\)

Áp dụng BĐT Chebyshev với bộ \(\dfrac{a}{a+b+c};\dfrac{b}{a+b+c};\dfrac{c}{a+b+c}\) và \(\sqrt{1+b+c};\sqrt{1+c+a};\sqrt{1+a+b}\):

\(VT\le\dfrac{1}{3}\Sigma\dfrac{a}{a+b+c}.\Sigma\sqrt{1+a+b}=\dfrac{\Sigma\sqrt{1+a+b}}{3}\)

\(\le\dfrac{\sqrt{3\left(3+2a+2b+2c\right)}}{3}\)

\(\le\dfrac{\sqrt{9+6\sqrt{3\left(a^2+b^2+c^2\right)}}}{3}=\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

6 tháng 3 2021

C280:

Áp dụng BĐT AM-GM và BĐT BSC:

\(\dfrac{1}{\sqrt{x+3y}}+\sqrt{x+3y}\ge2\Rightarrow\dfrac{1}{\sqrt{x+3y}}\ge2-\sqrt{x+3y}\)

\(\dfrac{1}{\sqrt{y+3z}}+\sqrt{y+3z}\ge2\Rightarrow\dfrac{1}{\sqrt{y+3z}}\ge2-\sqrt{y+3z}\)

\(\dfrac{1}{\sqrt{z+3x}}+\sqrt{z+3x}\ge2\Rightarrow\dfrac{1}{\sqrt{z+3x}}\ge2-\sqrt{z+3x}\)

\(\Rightarrow P=\dfrac{1}{\sqrt{x+3y}}+\dfrac{1}{\sqrt{y+3z}}+\dfrac{1}{\sqrt{z+3x}}\)

\(\ge6-\left(\sqrt{x+3y}+\sqrt{y+3z}+\sqrt{z+3x}\right)\)

\(\ge6-\sqrt{3\left(x+3y+y+3z+z+3x\right)}\)

\(=6-\sqrt{12\left(x+y+z\right)}=3\)

\(minP=3\Leftrightarrow a=b=c=\dfrac{1}{4}\)

6 tháng 3 2021

Bài 7) 

\(bđt\Leftrightarrow4\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3+4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)+6abc\)\(\Leftrightarrow ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\ge6abc\)

\(\Leftrightarrow\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

(Đúng theo Cô Si)

"=" khi a=b=c=1

3 tháng 3 2021

Câu 5 em thấy thầy làm từ chiều, em nghĩ anh nên đổi câu khác:

Cho \(x,y,z\ge0\).Tìm giá trị lớn nhất :\(P=\dfrac{x}{x^2 y^2 2} \dfrac{y}{y^2 z^2 2} \dfrac{z}{z^2 x^2 2}\) - Hoc24

3 tháng 3 2021

Câu 266 là >= chứ nhỉ?

24 tháng 9 2015

Kết quả hình ảnh cho truyện cười doremon chế v

24 tháng 9 2015

Kết quả hình ảnh cho truyện cười doremon chế 

26 tháng 2 2021

\(P=\sum\sqrt[3]{3a+1}=\dfrac{1}{\sqrt[3]{4}}\sum\sqrt[3]{2\cdot2\cdot\left(3a+1\right)}\le\dfrac{1}{3\sqrt[3]{4}}\sum\left(3a+5\right)=3\sqrt[3]{2}\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}.\)

Nãy em sai nha chứ không phải đề sai:vv Buồn ngủ đọc không kỹ đề:vv

 

26 tháng 2 2021

Bài 1.1.8 Khá hay và dễ.

Ta chứng minh: \(\left(1+a^3\right)\left(1+b^3\right)^2\ge\left(1+ab^2\right)^3\)

Áp dụng bất đẳng thức Holder:

\(VT=\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left[1+\left(a\cdot b\cdot b\right)\right]^3=\left(1+ab^2\right)^3\)

Thiết lập hai bất đẳng thức còn lại và nhân theo vế ta thu được đpcm.

Dấu đẳng thức xin dành cho bạn đọc.

Ps:  BTV thì BTV, thấy bài là em giải nha:v

21 tháng 2 2021

Bài 284 

Ta cần CM \(\left(a+b\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow a^5+b^5+a^4b+ab^4\ge a^5+b^5+a^2b^3+a^3b^2\)

\(\Leftrightarrow a^4b+ab^4\ge a^3b^2+a^2b^3\) \(\Leftrightarrow a^4b-a^3b^2-a^2b^3+ab^4\ge0\)

\(\Leftrightarrow a^3b\left(a-b\right)-ab^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3b-ab^3\right)\ge0\Leftrightarrow\left(a-b\right)ab\left(a^2-b^2\right)\ge0\) \(\Leftrightarrow\left(a-b\right)^2ab\left(a+b\right)\ge0\) luôn đúng với mọi a,b>0 Vậy...

17 tháng 3 2021

Ta có:\( \widehat{BIJ}=\widehat{BAI}+\widehat{ABI}\)
\(=\widehat{IAC}+\widehat{IBC}\) (I là tâm đường tròn nội tiếp tam giác ABC)

Xét (O) : \(\widehat{JAC}=\widehat{JBC}\)

Nên \( \widehat{BIJ}=\widehat{JBC}+\widehat{IBC}=\widehat{IBJ}\)

Suy ra tam giác BIJ cân tại J nên JB=JI 
J ∈đường trung trực của BI
Chứng minh tương tự có: JI=JC nên J ∈đường trung trực của IC
Suy ra J là tâm đường tròn ngoại tiếp tam giác BIC
b, Xét O có \(\widehat{JBK} =90^o\)
nên tam giác JBK vuông tại B

BE là đường cao (OB=OC;JB=JC nên OJ trung trực BC)

suy ra \(JB^2=JE.JK\) hay \(JI^2=JE.JK\)
b, Xét (O) có\( \widehat{SBJ}=\widehat{BAJ}=\widehat{JBC} \)(góc tạo bởi tia tt và dây cung và góc nội tiếp cùng chắn cung JB)
suy ra BJ là đường phân giác trong\( \widehat{SBE}\)

\(BJ⊥ BK \)nên BK là đường phân giác ngoài tam giác SBE 

suy ra\( \dfrac{SJ}{JE}=\dfrac{SK}{EK}\)

hay \(SJ.EK=SK.JE\)

c, Đặt L là tâm đường tròn bàng tiếp tam giác ABC suy ra A;J;L thẳng hàng
CL phân giác ngoài góc C;CI phân giác ngoài góc C

suy ra undefined
JI=JC nên \(\widehat{JIC}=\widehat{JCI}\)

\( \widehat{JIC}+ \widehat{ILC}=90^o\)

\(\widehat{JCI}+ \widehat{JCL}=90^o\)

nên  \(\widehat{ILC}= \widehat{JCL}\)

suy ra JC=JL nên J là trung điểm IL

Có:\( \widehat{ACL}=\widehat{ACI}+90^o\)

\(\widehat{AIB}=\widehat{ACI}+90^o\)

nên  \(\widehat{ACL}=\widehat{AIB}\)

Lại có: \(\widehat{LAC}=\widehat{BAI}\)

nên tam giác ABI \(\backsim\) tam giác ALC

suy ra \(AB.AC=AI.AL\)

Có trung tuyến SB SC cát tuyến SDA nên tứ giác ABDC là tứ giác điều hòa với \(AB.DC=BD.AC=\dfrac{1}{2}.AD.BC\)

suy ra \(BD.AC=AD.EC\)

cùng với\( \widehat{BDA}=\widehat{ECA}\)

nên tam giác ABD đồng dạng AEC

suy ra \(AB.AC=AD.AE;\widehat{BAD}=\widehat{EAC}\)

vậy \(AD.AE=AI.AL;\widehat{DAI}=\widehat{LAE}\) (do AJ là phân giác góc A)

từ đây suy ra tam giác ADI\( \backsim\) tam giác ALE

nên \(\widehat{ADI}=\widehat{ALE}\)

mà \( \widehat{ADI}= \widehat{AJM}=\widehat{ALE}\)

nên JM//LE

J là trung điểm IL nên JM đi qua trung điểm IE (đpcm)