K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)

\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

14 tháng 1 2020

@Akai Haruma

22 tháng 2 2022

Đặt \(abc=k^3\), khi đó tồn tại các số thực dương x,y,z sao cho:

\(a=\frac{ky}{x};b=\frac{kz}{y};c=\frac{kx}{z}\)

Khi đó bất đẳng thức cần chứng minh tương đương:

\(\frac{1}{\frac{ky}{x}\left(\frac{kz}{y}+1\right)}+\frac{1}{\frac{kz}{y}\left(\frac{kx}{z}+1\right)}+\frac{1}{\frac{kx}{z}\left(\frac{ky}{x}+1\right)}\ge\frac{3}{k\left(k+1\right)}\)

Hay \(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\ge\frac{3}{k+1}\)

Áp dụng bất đẳng thức Bunhiacopxki ta được:

\(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\)

\(=\frac{x^2}{x\left(y+kz\right)}+\frac{y^2}{y\left(z+kx\right)}+\frac{z^2}{z\left(x+ky\right)}\ge\frac{\left(x+y+z\right)^2}{x\left(y+kz\right)+y\left(z+kx\right)+z\left(x+ky\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(k+1\right)\left(xy+yz+zx\right)}\ge\frac{3}{k+1}\)

Vậy bất đẳng thức được chứng minh, dấu "=" xảy ra khi \(a=b=c\)

19 tháng 11 2019

Áp dụng BĐT AM - GM:

\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\frac{\left(a+c\right)^3}{a^3}}}=\sqrt{\frac{1}{\left(1+\frac{a+c}{a}\right)\left[1-\frac{a+c}{a}+\frac{\left(a+c\right)^2}{a^2}\right]}}\)

\(\ge\sqrt{\frac{4}{\left[1++\frac{a+c}{a}+1-\frac{a+c}{a}+\frac{\left(a+c\right)^2}{a^2}\right]^2}}\)

\(=\sqrt{\frac{4a^4}{\left[2a^2+\left(b+c\right)^2\right]^2}}=\frac{2a^2}{2a^2+\left(b+c\right)^2}\ge\frac{a^2}{a^2+b^2+c^2}\)

Tương tự ta chứng minh được:

\(\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)

\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\)

Công vế với vế 3 bất đẳng thức trên ta được

\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Dấu ''='' xảy ra \(\Leftrightarrow a=b=c\)

Mà đề bài có điều kiện a, b, c khác 0 không bạn

19 tháng 11 2019

@Nguyễn Việt Lâm

17 tháng 4 2019

\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{b^2c^2}{ab+ca}+\frac{c^2a^2}{bc+ab}+\frac{a^2b^2}{ca+bc}\)

\(\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{1}{2}\left(ab+bc+ca\right)\)

23 tháng 4 2019

Áp dụng BĐT Cauchy-Schwarz dạng Engel(hoặc áp dụng BĐT quen thuộc: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) 2 lần),ta có:

\(VT=\frac{\left(\frac{1}{a^2}\right)}{a\left(b+c\right)}+\frac{\left(\frac{1}{b^2}\right)}{b\left(c+a\right)}+\frac{\left(\frac{1}{c^2}\right)}{c\left(a+b\right)}\)

\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}\) (thay abc = 1 vào)

\(=\frac{ab+bc+ca}{2}=\frac{1}{2}\left(ab+bc+ca\right)^{\left(đpcm\right)}\)

9 tháng 11 2016

d/ Đặt \(x=a+b\) , \(y=b+c\) , \(z=c+a\)

thì : \(a=\frac{x+z-y}{2}\) ; \(b=\frac{x+y-z}{2}\) ; \(c=\frac{y+z-x}{2}\)

Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)

\(=\frac{z+x-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)

\(=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)-\frac{3}{2}\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\)

9 tháng 11 2016

b/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)

\(\Leftrightarrow\left(a^2b^2-2abc+c^2\right)+\left(b^2c^2-2abc+a^2\right)+\left(c^2a^2-2abc+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-c\right)^2+\left(bc-a\right)^2+\left(ca-b\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu dc chứng minh.

NV
6 tháng 6 2020

Đặt \(\left(\frac{1}{sinA};\frac{1}{sinB};\frac{1}{sinC}\right)=\left(a;b;c\right)\Rightarrow a;b;c>0\), áp dụng BĐT AM-GM

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{3}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Cộng vế với vế và rút gọn: \(1\ge\frac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\Leftrightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

\(\Leftrightarrow\left(1+\frac{1}{sinA}\right)\left(1+\frac{1}{sinB}\right)\left(1+\frac{1}{sinC}\right)\ge\left(1+\frac{1}{\sqrt[3]{sinA.sinB.sinC}}\right)^3\)

Dấu "=" xảy ra khi và chỉ khi \(\frac{1}{sinA}=\frac{1}{sinB}=\frac{1}{sinC}\Leftrightarrow\)

\(A=B=C=60^0\)