K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2016

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

7 tháng 9 2016

Bạn nói rõ hơn được không???

13 tháng 11 2019

Bài này cần chú ý: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3=\frac{\left(a-b\right)^2}{ab}+\frac{\left(a-c\right)\left(b-c\right)}{ac}\)

Và \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}=\frac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\frac{\left(a+b+2c\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Thêm 3 vào 2 vế ta cần chứng minh:

\(\frac{2}{1-a}+\frac{2}{1-b}+\frac{2}{1-c}\le2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\le\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{3}{2}\) (chia hai vế cho 2 và chú ý 1 =a + b + c)

\(\Leftrightarrow\frac{3}{2}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\le\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}\le\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\frac{\left(a+b+2c\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{\left(a-b\right)^2}{ab}+\frac{\left(a-c\right)\left(b-c\right)}{ac}\)

\(\Leftrightarrow\left(a-b\right)^2\left(\frac{1}{ab}-\frac{1}{\left(a+c\right)\left(b+c\right)}\right)+\left(\frac{1}{ac}-\frac{a+b+2c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-c\right)\left(b-c\right)\ge0\)

Quy đồng mỗi cái ngoặc to phía sau là thấy nó > 0:D

Giả sử c = min{a,b,c} như vậy (a-c)(b-c)\(\ge0\) chúng ta có đpcm.

Is that true?

13 tháng 11 2019

WLOG \(b=mid\left\{a,b,c\right\}\). Áp dụng một bổ đề trong một bài giải của alibaba nguyễn trong câu hỏi của Neet ở học 24. Mọi người có thể tự chứng minh để nhớ lâu hoặc ai cần có thể hỏi ổng

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\) với a,b,c>0

Khi đó ta cần chứng minh \(2\left(\frac{a+b}{b+c}+\frac{b+c}{a+b}\right)+2\ge\frac{2a+b+c}{b+c}+\frac{2b+c+a}{c+a}+\frac{2c+a+b}{a+b}\)

\(\Leftrightarrow\frac{a+b}{b+c}+\frac{b+c}{a+b}-\frac{1}{2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Leftrightarrow\frac{b}{b+c}+\frac{b}{a+b}-\frac{1}{2}\ge\frac{b}{c+a}\)

\(\Leftrightarrow\frac{\left(a-b\right)\left(b-c\right)\left(a+c+2b\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)*đúng với \(b=mid\left\{a,b,c\right\}\)*

9 tháng 8 2019

EM tham khảo phần đầu ở link: Câu hỏi của Đinh Nguyến Nhật Minh - Toán lớp 8 - Học toán với OnlineMath

Trong 3 số a,b, c có hai số đối nhau g/s 2 số đó là a và b kho đó a=-b 

=> \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-b\right)^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\)

và \(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-b\right)^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\)

Do đó: \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)

\(\sqrt{a^2-ab+b^2}=\sqrt{b.\frac{a^2-ab+b^2}{b}}=\sqrt{b.\left(\frac{a^2}{b}-a+b\right)}\le\frac{\frac{a^2}{b}-a+2b}{2}\)

tương tự mấy cái trên

30 tháng 12 2021

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

\(\ge\frac{9}{a^2+b^2+c^2+2ab+2bc+2ca}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}\)

\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=9+\frac{7}{\frac{1}{3}}=30\)

30 tháng 12 2021

Theo bất đẳng thức Cauchy dạng phân thức

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}>\frac{9}{ab+bc+ac}.\)

\(VT>\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ac}\)

\(VT>\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{7}{ab+bc+ac}\)

Theo hệ quả của bất đẳng thức Cauchy 

\(ab+bc+ac< \frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)

\(\frac{7}{ab+bc+ac>21}\left(1\right)\)

Theo bất đẳng thức Cauchy dạng phân thức

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}>\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

Từ (1) và (2)

\(VT>21+9=30\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c=\frac{1}{3}\)

4 tháng 1 2016

Ta có :

\(\frac{a^6}{a^3+a^2b+ab^2}+\frac{b^6}{b^3+b^2c+bc^2}+\frac{c^6}{c^3+ac^2+a^2c}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+a^2b+ab^2+b^3+b^2c+bc^2+c^3+ca^2+c^2a}\)

( BĐT ..... ) 

TA đi cm : \(a^3+ab^2+a^2b+b^3+b^2c+bc^2+c^3+ac^2+a^2c\) \(\le3\left(a^3+b^3+c^3\right)\) 

 (*) CM : \(a^2b+ab^2=ab\left(a+b\right)\le a^3+b^3\) ( cái này tự cm ) 

          Tương tự bc^2 ; b^2c ; ca^2 ; c^2a  ... 

=>\(a^3+ab\left(a+b\right)+b^3+bc\left(b+c\right)+c^3+ac\left(a+c\right)\le a^3+a^3+b^3+b^3+b^3+c^3+c^3+a^3+c^3\)

                                                                                                             = 3 (a^3 + b^3 + c^3 ) 

BĐT được cm . 

Dấu = xảy ra khi a = b= c 

4 tháng 1 2016

icon-chatcông tử bạc liêu

26 tháng 5 2018

\(\frac{1}{3a+2b+c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\right)\) )cái này bn tự cm nha bằng hệ quả của bunhia
tương tự :\(\frac{1}{3b+2c+a}\le\frac{1}{36}\left(\frac{3}{b}+\frac{2}{c}+\frac{1}{a}\right)\)

\(\frac{1}{3c+2a+b}\le\frac{1}{36}\left(\frac{3}{c}+\frac{2}{a}+\frac{1}{b}\right)\)

Công tất cả các vế vs nhau:\(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)\)=1/36 x96=8/3

à còn phần mik dùng bunhia sao ra dc thế nè :\(\frac{1}{3a+2b+c}=\frac{1}{a+a+a+b+b+c}\)

\(=\frac{1}{36}\left(\frac{36}{a+a+a+b+b+c}\right)\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)\(=\frac{1}{36}\left(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\right)\)

26 tháng 5 2018

tích cho tao phát thì t làm , 

9 tháng 7 2017

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]