K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

\(x+y=a+b\Rightarrow x-a=b-y\)

\(x^2+y^2=a^2+b^2\Rightarrow x^2-a^2+y^2-b^2=0\)\(\Leftrightarrow\left(x-a\right)\left(x+a\right)+\left(y-b\right)\left(y+b\right)=0\)

\(\Rightarrow\left(x-a\right)\left(x+a\right)+\left(a-x\right)\left(y+b\right)=0\text{ (do }x-a=b-y\text{)}\)

\(\Leftrightarrow\left(x-a\right)\left(x+a-y-b\right)=0\)

\(\Leftrightarrow x=a\text{ hoặc }x+a=y+b\)

+TH1: \(x=a\)

Mà \(x+y=a+b\Rightarrow y=b\)

+TH2: \(x+a=y+b\)

Mà \(x+y=a+b\)

\(\Rightarrow x+a+x+y=y+b+a+b\Rightarrow2x=2b\Rightarrow x=b\)

Mà \(x+y=a+b\Rightarrow y=a\)

Vậy \(x=a;\text{ }y=b\text{ hoặc }x=b;\text{ }y=a\)

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

Câu 1. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.Câu 2. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 3. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 4. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 5. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.Câu 6. Tìm giá trị lớn nhất...
Đọc tiếp

Câu 1. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.

Câu 2. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 3. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 4. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 5. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.

Câu 6. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.

Câu 7. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 8. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 9. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 10. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

--------------------------làm đầy đủ nha ^_^--------------------------------------------------------

0
19 tháng 11 2021

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

4 tháng 6 2021

Áp dụng bđt bunhiacopxki có:

\(\left(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

Dấu "=" xảy ra <=> \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

5 tháng 6 2021

BĐT này gọi là BĐT Cauchy-Schwarz đó bạn.

Chứng minh BĐT: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)

\(\Rightarrow\dfrac{a^2y+b^2x}{xy}\ge\dfrac{\left(a+b\right)^2}{x+y}\Rightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2.xy\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\Leftrightarrow\left(ay-by\right)^2\ge0\) (luôn đúng)

Áp dụng BĐT trên vào đề:

Ta được: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b\right)^2}{x+y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

 

14 tháng 3 2017

\(2.\) Bạn nghiêm túc gửi câu hỏi nhé!. Mình có lời giải rồi

Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có: \({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\) Bài 2: Chứng minh rằng với mọi số thực x,y ta có: \(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\) Bài 3: Cho x,y,z thuộc R. Chứng minh rằng: \(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\) Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\) Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq...
Đọc tiếp

Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có:

\({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\)

Bài 2: Chứng minh rằng với mọi số thực x,y ta có:

\(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\)

Bài 3: Cho x,y,z thuộc R. Chứng minh rằng:

\(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\)

Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\)

Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq xy\)

Bài 6: Cho x,y>=1. Chứng minh rằng: \({1\over 1+x^2}+{1\over 1+y^2}\geq {2\over 1+xy}\)

Bài 7: Chứng minh rằng với mọi số thực a,b ta có:

\(2(a^4+b^4)\geq ab^3+a^3b+2a^2b^2\)

Bài 8: Cho hai số thực x,y khác không. Chứng minh rằng:

\({4x^2y^2\over (x^2+y^2)^2}+{x^2\over y^2}+{y^2\over x^2}\geq 3\)

Bài 9: Cho các số thực a,b cùng dấu. Chứng minh bất đẳng thức:

\(({(a^2+b^2)\over 2})^3\leq({(a^3+b^3)\over 2})^2\)

Bài 10: Cho các số thực dương a,b. Chứng minh các bất đẳng thức sau:

\({a^2b\over(2a^3+b^3)}+{2\over 3} \leq {(a^2+2ab)\over (2a^2+b^2)}\)

Bài 11: Cho các số thực a,b không đồng thời bằng 0. Chứng minh:

\({2ab\over (a^2+4b^2)}+{b^2\over (3a^2+2b^2)}\leq {3\over 5}\)

@Akai Haruma

12
12 tháng 6 2018

Bài 1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy

⇒ x2 + y2 ≥ 2xy

\(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\) ≥ 2

\(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2

⇒ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\)) ≥ 6 ( 1)

CMTT : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\)\(6\) ( 2)

Từ ( 1 ; 2) ⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\))

Đẳng thức xảy ra khi : x = y

12 tháng 6 2018

Bài 4. Do : a ≥ 4 ; b ≥ 4 ⇒ ab ≥ 16 ( * ) ; a + b ≥ 8 ( ** )

Áp dụng BĐT Cauchy , ta có : a2 + b2 ≥ 2ab = 2.16 = 32 ( *** )

Từ ( * ; *** ) ⇒ a2 + b2 + ab ≥ 16 + 32 = 48 ( 1 )

Từ ( ** ) ⇒ 6( a + b) ≥ 48 ( 2)

Từ ( 1 ; 2 ) ⇒a2 + b2 + ab ≥ 6( a + b)

Đẳng thức xảy ra khi a = b = 4

8 tháng 12 2023

 Trước hết ta chứng minh BĐT sau: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\) (*) với \(a,b,x,y>0\). Thật vậy, (*) tương đương \(\dfrac{a^2y+b^2x}{xy}\ge\dfrac{a^2+2ab+b^2}{x+y}\)

 \(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge2abxy+a^2xy+b^2xy\)

 \(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh. ĐTXR \(\Leftrightarrow ay=bx\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)

Áp dụng BĐT (*) liên tiếp, ta được:

 \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b\right)^2}{x+y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

Ta có đpcm.

a) Ta có: \(A=\dfrac{x-\sqrt{xy}+y}{x\sqrt{x}+y\sqrt{y}}+\dfrac{x+\sqrt{xy}+y}{x\sqrt{x}-y\sqrt{y}}\)

\(=\dfrac{x-\sqrt{xy}+y}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}+\dfrac{x+\sqrt{xy}+y}{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}\)

\(=\dfrac{1}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{x}-\sqrt{y}}\)

\(=\dfrac{\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}}{x-y}\)

\(=\dfrac{2\sqrt{x}}{x-y}\)