K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 6 2019

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{1}{4xy}\)

\(A\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{1}{\left(x+y\right)^2}\)

\(A\ge\frac{4}{1^2}+2+\frac{1}{1^2}=7\)

Dấu "=" khi \(x=y=\frac{1}{2}\)

6 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

NM
6 tháng 1 2021

Xét \(\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{1-y}{y^3-1}+\frac{1-x}{x^3-1}=-\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}\)

\(=-\frac{x^2+y^2+x+y+2}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=-\frac{x^2+y^2+3}{x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1}\)

\(=-\frac{\left(x+y\right)^2-2xy+3}{x^2y^2+x^2+y^2+2xy+2}=-\frac{4-2xy}{x^2y^2+3}=\frac{2\left(xy-2\right)}{x^2y^2+3}\)

từ đó ta có đpcm

27 tháng 1 2021

Áp dụng BĐT Cauchy và Cauchy - Schwarz ta có:

 \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy\cdot\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)

\(=\frac{4}{\left(x+y\right)^2}+2+\frac{5}{1^2}=4+2+5=11\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

10 tháng 9 2017

lẽ ra x,y,z>0 chứ sao lại a,b,c>0 :))

Áp dụng bđt Cô-si:\(x^2+yz\ge2\sqrt{x^2.yz}=2x\sqrt{yz}\Leftrightarrow\frac{1}{x^2+yz}\le\frac{1}{2x\sqrt{yz}}\)

tương tự: \(\frac{1}{y^2+xz}\le\frac{1}{2y\sqrt{xz}};\frac{1}{z^2+xy}\le\frac{1}{2z\sqrt{xy}}\)

=>\(\frac{1}{x^2+yz}\)\(+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{xz}}+\frac{1}{2z\sqrt{xy}}=\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2xyz}\)

Mặt khác theo bđt Cô-si thì: \(\sqrt{xy}\le\frac{x+y}{2};\sqrt{yz}\le\frac{y+z}{2};\sqrt{xz}\le\frac{x+z}{2}\)

=>\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z\)

=>​\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2xyz}\le\frac{x+y+z}{2xyz}=\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

ta có đpcm.

10 tháng 9 2017

Áp dụng cauchy cho mỗi mẫu số vế trái , có :

\(VT\le\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{xz}}+\frac{1}{2z\sqrt{xy}}=\frac{1}{2}.\left(\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\right)\)

                                         \(=\frac{1}{2}.\left(\frac{\sqrt{yz}}{xyz}+\frac{\sqrt{xz}}{xyz}+\frac{\sqrt{zx}}{xyz}\right)=\frac{1}{2}.\frac{\sqrt{yz}+\sqrt{xz}+\sqrt{xz}}{xyz}\)

Biến đổi vế phải , có :

\(VP=\frac{1}{2}.\left(\frac{z}{xyz}+\frac{x}{xyz}+\frac{y}{xyz}\right)=\frac{1}{2}.\frac{x+y+z}{xyz}\)

Ta có :

\(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

<=> \(2x+2y+2z\ge2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\) (đúng - Hệ quả của Cauchy, lên mạng sợt là ra )

=> \(\frac{1}{2}.\frac{x+y+z}{xyz}\ge\frac{1}{2}.\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{xyz}\)

=> \(VP\ge VT\)

13 tháng 6 2021

Với mọi số thực ta luôn có:

`(x-y)^2>=0`

`<=>x^2-2xy+y^2>=0`

`<=>x^2+y^2>=2xy`

`<=>(x+y)^2>=4xy`

`<=>(x+y)^2>=16`

`<=>x+y>=4(đpcm)`

13 tháng 6 2021

\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)

\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))

=> \(\dfrac{x+y+6}{3x+3y+13}\)\(\dfrac{2}{5}\)

<=> \(5\left(x+y+6\right)\)\(2\left(3x+3y+13\right)\)

<=>\(6x+6y+26-5x-5y-30\)\(0\)

<=> \(x+y-4\)\(0\)

Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)\(\sqrt{ab}\)

Ta có \(\dfrac{x+y}{2}\)\(\sqrt{xy}\)

<=>\(x+y\) ≥ 2\(\sqrt{xy}\)

=>2\(\sqrt{xy}-4\)\(0\)

<=> \(4-4\)≥0

<=>0≥0 ( Luôn đúng )

Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)\(\dfrac{2}{5}\)

 

24 tháng 3 2020

Theo bài ra ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\Rightarrow x+y+z=xyz\)

Do:\(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự: \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\);

\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(z+y\right)\left(x+y\right)}\)

\(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\)

\(A=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng bất đẳng thức Cô si \(\frac{a+b}{2}\ge\sqrt{ab}\), dấu "=" xảy ra khi \(a=b\)

Ta có \(\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\);

\(\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\);

\(\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\le\frac{1}{2}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(A\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{y+x}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy \(A\le\frac{3}{2}\). Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

24 tháng 3 2020

M giải thích cho t chỗ sao mà \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\) đc vậy?

Với cả từ dòng này xuống dòng này nữa.

Violympic toán 8

Sao mà tin đc dấu " = " xảy ra khi nào vậy?

Violympic toán 8

29 tháng 11 2016

(chứng minh rằng\) x y 3 −1 - Online Math

13 tháng 5 2020

Ta có \(y^3-1=\left(y-1\right)\left(y^2+y+1\right)=-x\left(y^2+y+1\right)\)

(vì \(xy\ne0\Rightarrow x,y\ne0\))

\(\Rightarrow x-1\ne0;y-1\ne0\)

\(\Rightarrow\frac{x}{y^3-1}=\frac{-1}{y^2+y+1}\)

\(x^3-1=\left(x-1\right)\left(x^2-x+1\right)=-y\left(x^2-x+1\right)\Rightarrow\frac{y}{x^3-1}=\frac{-1}{x^2+x+1}\)

\(\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{-1}{y^2+y+1}+\frac{-1}{x^2+x+1}\)

\(=-\left(\frac{x^2+x+1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\right)=-\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)+2}{x^2y^2+\left(x+y\right)^2-2xy+xy\left(x+y\right)+xy+\left(x+y\right)+1}\right)\)

\(=-\frac{4-2xy}{x^2y^2+3}\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)

9 tháng 6 2018

Sử dụng BĐT AM-GM, ta có: 

\(x^3+y^2\ge2yx\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)

Tương tự cộng lại suy ra: 

\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)