K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Ta có: \(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

\((x-y)^2; (y-z)^2;(z-x)^2\geq 0\), do đó để tổng của chúng bằng $0$ thì:

\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)

\(\Rightarrow 3x^{2017}=3y^{2017}=3z^{2017}=x^{2017}+y^{2017}+z^{2017}=9\)

\(\Rightarrow x=y=z=\sqrt[2017]{3}\)

\(\Rightarrow \left(\frac{2017x+2018y-4023z}{3}\right)^{2017}=\left(\frac{12x}{3}\right)^{2017}=(4x)^{2017}=3.4^{2017}\)

16 tháng 11 2018

Em cảm ơn cô chúc cô ngày nhà giáo vui vẻ

3 tháng 10 2021

Đề là gì bn nhỉ

3 tháng 10 2021

tính tổng bạn, bạn kéo xuống có đề của nó đó

29 tháng 12 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ \Rightarrow\left\{{}\begin{matrix}1+\dfrac{x}{y}+\dfrac{x}{z}=0\\\dfrac{y}{x}+1+\dfrac{y}{z}=0\\\dfrac{z}{x}+\dfrac{z}{y}+1=0\end{matrix}\right.\\ \Rightarrow\dfrac{x}{y}+\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{x}+\dfrac{z}{y}=-3\)

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ \Rightarrow\dfrac{yz+xz+xy}{xyz}=0\\ \Rightarrow yz+xz+xy=0\)

\(\Rightarrow\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\left(xy+xz+yz\right)=0\\ \Rightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}+\dfrac{x}{y}+\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{x}+\dfrac{z}{y}=0\\ \Rightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

13 tháng 12 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{-1}{z}\)

\(\Rightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3=\left(\dfrac{-1}{z}\right)^3\)

\(\Leftrightarrow\dfrac{1}{x^3}+3\dfrac{1}{x^2}\dfrac{1}{y}+3\dfrac{1}{x}\dfrac{1}{y^2}+\dfrac{1}{y^3}=\dfrac{-1}{z^3}\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-3.\dfrac{1}{x}\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-3\dfrac{1}{x}\dfrac{1}{y}\dfrac{-1}{z}\)

\(\Leftrightarrow\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)xyz=3\dfrac{1}{x}\dfrac{1}{y}\dfrac{1}{z}.xyz\)

\(\Leftrightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

17 tháng 7 2023

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Rightarrow2\left(xy+yz+xz\right)=\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2\left(xy+yz+xz\right)=a^2+b\)

\(\Rightarrow xy+yz+xz=\dfrac{a^2+b}{2}\)

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{c}\Rightarrow\dfrac{xy+yz+xz}{xyz}=\dfrac{1}{c}\)

\(\Rightarrow xyz=c\left(xy+yz+xz\right)\)

\(\Rightarrow xyz=\dfrac{\left(a^2+b\right)c}{2}\)

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)

\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-\left(xy+yz+xz\right)\right)+3xyz\)

\(\Rightarrow x^3+y^3+z^3=a\left(b-\dfrac{a^2+b}{2}\right)+3\dfrac{\left(a^2+b\right)c}{2}\)

\(\Rightarrow x^3+y^3+z^3=a\dfrac{\left(b-a^2\right)}{2}+3\dfrac{\left(a^2+b\right)c}{2}\)

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$

$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$

$\Leftrightarrow x=3; y=-2$

---------------------

$B=9x^2+y^2+2z^2-18x+4z-6y+30$

$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$

$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$

$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$

$\Leftrightarrow x=1; y=3; z=-1$

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$C=x^2+y^2+z^2-xy-yz-xz+3$

$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$

$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$

$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$

$\Rightarrow C\geq 3$

Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$

$\Leftrihgtarrow x=y=z$

--------------------------------------

$D=5x^2+2y^2+4xy-2x+4y+2021$

$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$

$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$

$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$

$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$

Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$

$\Leftrightarrow x=1; y=-2$

8 tháng 8 2017

a)(x-y)3+(y-z)3+(z-x)3

=3(x-y+y-z+z-x)=3

b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]

NV
21 tháng 2 2019

Sửa lại đề: cho x, y, z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\)

Chứng minh \(A=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\le\dfrac{3}{2}\)

Giải:

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow ab+bc+ac=1\)

\(\Rightarrow A=\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{bc}\left(1+\dfrac{1}{a^2}\right)}}+\dfrac{\dfrac{1}{b}}{\sqrt{\dfrac{1}{ac}\left(1+\dfrac{1}{b^2}\right)}}+\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{ab}\left(1+\dfrac{1}{c^2}\right)}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+1}}+\sqrt{\dfrac{ac}{b^2+1}}+\sqrt{\dfrac{ab}{c^2+1}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+ab+bc+ac}}+\sqrt{\dfrac{ac}{b^2+ab+bc+ac}}+\sqrt{\dfrac{ab}{c^2+ab+bc+ac}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ac}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)

\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\) hay \(x=y=z=\sqrt{3}\)

NV
21 tháng 2 2019

Đề bài này có rất nhiều vấn đề, đầu tiên không có điều kiện x, y, z gì cả? Dương? Â? Bằng 0? Khác 0?

Sau nữa là chiều của BĐT cũng có vấn đề nốt, mình thử với \(x=y=2;z=\dfrac{4}{3}\) thì vế trái ra \(\dfrac{2+\sqrt{30}}{5}\) mà theo casio cho biết thì số này nhỏ hơn \(\dfrac{3}{2}\) , vậy BĐT cũng sai luôn

5 tháng 6 2016

a, ap dung bunhiacopxki 

(1+1+1)A\(\ge\)(x+y+z)2=9

A\(\ge\)

Dau bang xay ra khi x=y=z=1

b, co Bmax ko co Bmin

NV
19 tháng 6 2020

Đặt \(\left(\frac{yz}{x};\frac{zx}{y};\frac{xy}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=x^2+y^2+z^2=3\)

Ta có:

\(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=\sqrt{9}=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\) hay \(x=y=z=1\)