K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2020

olm bi loi

14 tháng 12 2020

Ta thấy: \(\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}=\Sigma_{cyc}\frac{a^2+bc}{\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}}\)

Ta lại có: \(\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}\le\frac{\left(a^2b+b^2c\right)+\left(bc^2+ca^2\right)+\left(c^2a+ab^2\right)}{3}=\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)

\(\Leftrightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{\Sigma_{cyc}\left(a^2+bc\right)}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{a^2+b^2+c^2+ab+bc+ca}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}\)

Nhận thấy: \(A=\left(a+b+c\right)\left(a^2+b^2+c^2+ab+bc+ca\right)=a^3+b^3+c^3+3abc+2\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)

Theo Schur: \(a^3+b^3+c^3+3abc\ge\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)

\(\Leftrightarrow A\ge3\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{3\Sigma_{cyc}\left(ab\left(a+b\right)\right)}{\frac{1}{3}\left(a+b+c\right)\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{9}{a+b+c}\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

Thay dấu "=" thành $\geq $ ta được BĐT Holder. Dấu "=" xác định tại $\sin A=\sin B=\sin C$ hay tam giác $ABC$ đều.

Chứng minh cụ thể như sau:

\(\frac{1}{1+\frac{1}{\sin A}}+\frac{1}{1+\frac{1}{\sin B}}+\frac{1}{1+\frac{1}{\sin C}}\geq 3\sqrt[3]{\frac{1}{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)

\(\frac{\frac{1}{\sin A}}{1+\frac{1}{\sin A}}+\frac{\frac{1}{\sin B}}{1+\frac{1}{\sin B}}+\frac{\frac{1}{\sin C}}{1+\frac{1}{\sin C}}\geq 3\sqrt[3]{\frac{\frac{1}{\sin A\sin B\sin C}}{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)

Cộng theo vế và rút gọn:

\(\Rightarrow 3\geq 3\frac{1+\sqrt[3]{\frac{1}{\sin A\sin B\sin C}}}{\sqrt[3]{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)

\(\Rightarrow (1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})\geq (1+\sqrt[3]{\frac{1}{\sin A\sin B\sin C}})^3\)

Dấu "=" xảy ra (như đề bài) khi \(\sin A=\sin B=\sin C\Rightarrow \angle A=\angle B=\angle C=60^0\)

30 tháng 6 2019

phức tạp thật!

14 tháng 1 2020

@Akai Haruma

21 tháng 5 2021

Áp dụng bất đẳng thức \(\sqrt{\left(x+y\right)\left(m+n\right)}\ge\sqrt{xm}+\sqrt{yn}\) , có :

\(\frac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\le\frac{a}{a+\sqrt{ac}+\sqrt{ab}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Tương tự và cộng lại ta được :

\(VT\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

\(=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Vậy ta có điều phải chứng minh !