K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

\(\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z}{z+xy}=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)

\(=\text{Σ}\frac{x}{\left(x+y\right)\left(x+z\right)}=\frac{2\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)(1)

+) CM bổ đề (cái này khá hữu dụng): \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}\cdot3\sqrt[3]{x^2y^2z^2}=9xyz\Leftrightarrow\frac{1}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\ge xyz\)

Có \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(x+y+z\right)\left(xy+yz+xz\right)-xyz\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)

Thay vào (1)-> DPCM

Dấu = xảy ra khi x=y=z=1/3

17 tháng 10 2019

Thx HD film

19 tháng 10 2016

Đặt \(a=\sqrt{\frac{yz}{x}},b=\sqrt{\frac{zx}{y}},c=\sqrt{\frac{xy}{z}}\) \(\Rightarrow ab+bc+ac=1\)

Suy ra bài toán trở về dạng chứng minh \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{9}{4}\)

\(\Leftrightarrow1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\le\frac{9}{4}\)

\(\Leftrightarrow\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\ge\frac{3}{4}\)(*)

Áp dụng bất đẳng thức AM-GM ta có : 

\(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\)

Đặt t = a+b+c \(\Rightarrow a^2+b^2+c^2=t^2-2\)

Ta cần chứng minh \(\frac{t^2}{t^2+1}\ge\frac{3}{4}\Leftrightarrow4t^2\ge3t^2+3\Rightarrow t^2\ge3\)(Luôn đúng vì \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)=3\))

Vậy ta có đpcm

4 tháng 1 2020

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
26 tháng 10 2020

Áp dụng BĐT AM - GM ta có:

\(VT\le\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{zx}}+\frac{1}{2z\sqrt{xy}}=\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{2xyz}\le\frac{x+y+z}{2xyz}=VP\left(đpcm\right)\)

11 tháng 7 2020

Đặt \(\left(a,b,c\right)=\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\).

Xét 4 số m, n, p, q. Ta sẽ chứng minh \(\left(m+n+p+q\right)^2\le4\left(m^2+n^2+p^2+q^2\right)\) (*)

Thật vậy:

(*) \(\Leftrightarrow2\left(mn+np+pq+qm+mp+nq\right)\le3\left(m^2+n^2+p^2+q^2\right)\)

\(\Leftrightarrow\left(m-n\right)^2+\left(n-p\right)^2+\left(p-q\right)^2+\left(q-m\right)^2+\left(m-p\right)^2+\left(n-q\right)^2\ge0\) (luôn đúng).

Từ đó: \(\left(\sqrt{x}+\sqrt{y}+2\sqrt{z}\right)^2=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{z}\right)^2\le4\left(x+y+z+z\right)=4\left(x+y+2z\right)\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}+2\sqrt{z}\le2\sqrt{x+y+2z}\)

\(\Leftrightarrow\sqrt{\frac{xy}{x+y+2z}}=\frac{\sqrt{xy}}{\sqrt{x+y+2z}}\le\frac{2\sqrt{x}\sqrt{y}}{\sqrt{x}+\sqrt{y}+2\sqrt{z}}=\frac{2ab}{a+b+2c}\le\frac{1}{2}ab\frac{4}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{2}ab\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự, ta có:

\(\sum\sqrt{\frac{xy}{x+y+2z}}\le\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{bc}{c+a}\right)=\frac{1}{2}\sum a=\frac{1}{2}\)

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

NV
16 tháng 10 2019

\(P=\sum\frac{x^2\left(y+z\right)}{yz}\ge\sum\frac{4x^2\left(y+z\right)}{\left(y+z\right)^2}=\sum\frac{4x^2}{y+z}\ge\frac{4\left(x+y+z\right)^2}{y+z+z+x+x+y}=2\left(x+y+z\right)=2\)

\(P_{min}=2\) khi \(x=y=z=\frac{1}{3}\)

Câu 2 có dương không nhỉ? Không dương thì không làm được

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{2}{\left(x+y\right)^2}=\frac{6}{\left(x+y\right)^2}\ge6\)

\(A_{min}=6\) khi \(x=y=\frac{1}{2}\)

16 tháng 10 2019

1) \(P\ge\frac{x^2.2\sqrt{yz}}{yz}+\frac{y^2.2\sqrt{zx}}{zx}+\frac{z^2.2\sqrt{xy}}{xy}=\frac{2x^2}{\sqrt{yz}}+\frac{2y^2}{\sqrt{zx}}+\frac{2z^2}{\sqrt{xy}}\ge4\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)=4\left\{\left[\frac{x^2}{y+z}+\frac{1}{4}\left(y+z\right)\right]+\left[\frac{y^2}{z+x}+\frac{1}{4}\left(z+x\right)\right]+\left[\frac{z^2}{x+y}+\frac{1}{4}\left(x+y\right)\right]\right\}-2\left(x+y+z\right)\ge4\left(x+y+z\right)-2\left(x+y+z\right)=2\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{3}\)

2) \(A=\left[\frac{1}{x^2+y^2}+4\left(x^2+y^2\right)\right]+\left(\frac{1}{xy}+16xy\right)-4\left(x+y\right)^2-8xy\ge4+8-4-2.\left(x+y\right)^2=8-2.\left(x+y\right)^2\ge8-2=6\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)

NV
17 tháng 5 2020

Thay số 3 bằng x+y+z theo giả thiết

abcd

NV
17 tháng 5 2020

Sửa đề: mẫu số cuối cùng là \(z+\sqrt{3z+xy}\) mới hợp lý

\(3x+yz=x\left(x+y+z\right)+yz=x^2+xy+yz+zx=\left(x+y\right)\left(z+x\right)\)

Mà theo BĐT Bunhiacopxki:

\(\left(x+y\right)\left(z+x\right)\ge\left(\sqrt{xz}+\sqrt{yx}\right)^2\)

\(\Rightarrow\sqrt{3x+yz}\ge\sqrt{xz}+\sqrt{xy}\)

Tương tự ta có: \(\sqrt{3y+zx}\ge\sqrt{yz}+\sqrt{xy}\) ; \(\sqrt{3z+xz}\ge\sqrt{xz}+\sqrt{yz}\)

\(\Rightarrow VT\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}+\frac{y}{y+\sqrt{xy}+\sqrt{yz}}+\frac{z}{z+\sqrt{xz}+\sqrt{yz}}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\)

9 tháng 3 2020

Áp dụng BĐT Cosi cho 2 sô dương ta có: \(x^2+yz\ge2x\sqrt{yz}\)

Tương tự: \(y^2+zx\ge2y\sqrt{zx};z^2+xy\ge2z\sqrt{xy}\)

Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được:

\(\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{zx}}+\frac{1}{2z\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\Leftrightarrow\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{xyz}\le\frac{x+y+z}{xyz}\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)

\(\Leftrightarrow\frac{1}{2}\left(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\right)\ge0\)(luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)