K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2017

Lời giải:

Áp dụng BĐT Cauchy:

\(\left\{\begin{matrix} 9b+a\geq 6\sqrt{ab}\\ 8a+2c\geq 8\sqrt{ac}\end{matrix}\right.\Rightarrow 6\sqrt{ab}+8\sqrt{ac}+7c\leq 9(a+b+c)\)

Do đó \(P\geq \frac{1}{9(a+b+c)}+2\sqrt{a+b+c}\)

Tiếp tục áp dụng BĐT Cauchy:

\(\frac{1}{9(a+b+c)}+\frac{\sqrt{a+b+c}}{243}+\frac{\sqrt{a+b+c}}{243}\geq 3\sqrt[3]{\frac{1}{9.243.243}}=\frac{1}{27}\)

\(\frac{484\sqrt{a+b+c}}{243}\geq \frac{484}{81}\) do \(a+b+c\geq 9\)

Cộng theo vế suy ra \(P\geq \frac{1}{9(a+b+c)}+2\sqrt{a+b+c}\geq \frac{1}{27}+\frac{484}{81}=\frac{487}{81}\)

Vậy \(P_{\min}=\frac{487}{81}\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} a=9b\\ 4a=c\\ a+b+c=9\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{81}{46}\\ b=\frac{9}{46}\\ c=\frac{162}{23}\end{matrix}\right.\)

NV
29 tháng 2 2020

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
29 tháng 2 2020

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)

NV
21 tháng 10 2019

\(P=\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\)

\(P\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}=\frac{1}{1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}\ge\frac{1}{1+\left(a+b+c\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

NV
20 tháng 6 2020

\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\ge\frac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự: \(\sqrt{\frac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\) ; \(\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge ca+2b^2\)

Cộng vế với vế:

\(VT\ge2\left(a^2+b^2+c^2\right)+ab+bc+ca=2+ab+bc+ca\)

19 tháng 3 2017

\(P=\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\)

\(P=\dfrac{a^4}{\sqrt{a^2\left(b^2+3\right)}}+\dfrac{b^4}{\sqrt{b^2\left(c^2+3\right)}}+\dfrac{c^4}{\sqrt{c^2\left(a^2+3\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a^2\left(b^2+3\right)}\le\dfrac{a^2+b^2+3}{2}\\\sqrt{b^2\left(c^2+3\right)}\le\dfrac{b^2+c^2+3}{2}\\\sqrt{c^2\left(a^2+3\right)}\le\dfrac{c^2+a^2+3}{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}\le\dfrac{2\left(a^2+b^2+c^2\right)+3}{2}=\dfrac{9}{2}\)

\(\Rightarrow\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\ge\dfrac{2\left(a^2+b^2+c^2\right)^2}{9}=2\)

\(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\)

\(\Rightarrow VT\ge2\)

\(\Leftrightarrow\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\ge2\)

\(\Leftrightarrow P\ge2\)

Vậy \(P_{min}=2\)

23 tháng 5 2016

đặt  (với a, b, c > 0). Khi đó phương trình đã cho trở thành:

a = b = c = 2
Suy ra: x = 2013, y = 2014, z = 2015.

5 tháng 12 2018

Ta có: \(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{5}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2}\ge\sqrt{\dfrac{5}{4}}\left(a+b\right)\)

Cmtt ta có: \(\sqrt{2b^2+bc+2c^2}\ge\sqrt{\dfrac{5}{4}}\left(b+c\right)\)

\(\sqrt{2c^2+ca+2a^2}\ge\sqrt{\dfrac{5}{4}}\left(c+a\right)\)

\(\Rightarrow P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\dfrac{\sqrt{5}}{3}\)

Dấu "=" xảy ra <=> a = b = c = \(\dfrac{1}{9}\)

NV
20 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Nguyễn Bảo Trân - Toán lớp 9 | Học trực tuyến

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{a^2}{b}=\frac{a^2-ab+b^2}{b}+a-b=\frac{a^2-ab+b^2}{b}+b+(a-2b)\geq 2\sqrt{a^2-ab+b^2}+(a-2b)\)

Tương tự:

\(\frac{b^2}{c}\geq 2\sqrt{b^2-bc+c^2}+(b-2c)\)

\(\frac{c^2}{a}\geq 2\sqrt{c^2-ca+a^2}+(c-2a)\)

Cộng theo vế:
\(\sum \frac{a^2}{b}\geq 2\sum \sqrt{a^2-ab+b^2}-(a+b+c)(1)\)

Mà theo BĐT AM-GM:

\(\sqrt{a^2-ab+b^2}=\sqrt{(a+b)^2-3ab}\geq \sqrt{(a+b)^2-\frac{3}{4}(a+b)^2}=\frac{a+b}{2}\)

\(\Rightarrow \sum \sqrt{a^2-ab+b^2}\geq \sum \frac{a+b}{2}=a+b+c(2)\)

Từ $(1);(2)\Rightarrow \sum \frac{a^2}{b}\geq \sum \sqrt{a^2-ab+b^2}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$