K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 3 2021

Đặt \(\left(a;b;c\right)=\left(x^4;y^4;z^4\right)\Rightarrow xyz=1\)

\(VT=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(VT=\dfrac{1}{x^2+y^2+y^2+1+2}+\dfrac{1}{y^2+z^2+z^2+1+2}+\dfrac{1}{z^2+x^2+x^2+1+2}\)

\(VT\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
27 tháng 4 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\) với \(x;y;z>0\Rightarrow xyz=1\)

Đặt vế trái của BĐT cần chứng minh là P

Ta có: \(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)

\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)

\(P\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{1}{yz+z+1}+\dfrac{1}{zx+x+1}\right)=\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{xyz}{yz+z+xyz}+\dfrac{y}{xyz+xy+y}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{xy}{y+1+xy}+\dfrac{y}{1+xy+y}\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Lời giải:
\(a+b+c=abc\Rightarrow a(a+b+c)=a^2bc\)

\(\Rightarrow a(a+b+c)+bc=bc(a^2+1)\)

\(\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\)

\(\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}\Rightarrow \frac{1}{\sqrt{a^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}\)

Áp dụng BĐT AM-GM:

\(\frac{1}{\sqrt{a^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}(\frac{b}{a+b}+\frac{c}{a+c})\)

Hoàn toàn tương tự:

\(\frac{1}{\sqrt{b^2+1}}=\sqrt{\frac{ac}{(b+a)(b+c)}}\leq \frac{1}{2}(\frac{a}{b+a}+\frac{c}{b+c})\)

\(\frac{1}{\sqrt{c^2+1}}=\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}(\frac{a}{c+a}+\frac{b}{b+c})\)

Cộng theo vế:

\(\Rightarrow \frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}\leq \frac{1}{2}(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a})=\frac{3}{2}\)

Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\sqrt{3}$

AH
Akai Haruma
Giáo viên
28 tháng 2 2019

Lời giải:
Vì $abc=1$ nên tồn tại $x,y,z$ sao cho : \((a,b,c)=\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)\)

Khi đó:

\(\text{VT}=\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}+\frac{1}{\sqrt{\frac{y}{x}+\frac{y}{z}+2}}+\frac{1}{\sqrt{\frac{z}{y}+\frac{z}{x}+2}}=\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}+\frac{\sqrt{xz}}{\sqrt{xy+yz+2xz}}+\frac{\sqrt{xy}}{\sqrt{xz+yz+2xy}}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}^2\leq (1+1+1)\left(\frac{yz}{xy+xz+2yz}+\frac{xz}{xy+yz+2xz}+\frac{xy}{xz+yz+2xy}\right)\)

\(\leq 3\left[\frac{yz}{4}\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)+\frac{xz}{4}\left(\frac{1}{xy+xz}+\frac{1}{xz+yz}\right)+\frac{xy}{4}\left(\frac{1}{xz+xy}+\frac{1}{yz+xy}\right)\right]\)

hay \(\text{VT}^2\leq \frac{3}{4}.\left(\frac{xy+yz}{xy+yz}+\frac{xy+xz}{xy+xz}+\frac{yz+xz}{yz+xz}\right)=\frac{9}{4}\)

\(\Rightarrow \text{VT}\leq \frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$

2 tháng 10 2018

ko biet

19 tháng 1 2023

\(ab+bc+ca\le1\)

\(\Rightarrow\sqrt{a^2+1}\ge\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}\)

\(tương\) \(tự\Rightarrow\Sigma\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}+\dfrac{\dfrac{b}{a+b}+\dfrac{b}{b+c}}{2}+\dfrac{\dfrac{c}{b+c}+\dfrac{c}{a+c}}{2}=\dfrac{3}{2}\left(đpcm\right)\)

\(dấu"="\Leftrightarrow a=b=c=\sqrt{\dfrac{1}{3}}\)

18 tháng 4 2023

Ta có \(\sqrt{a-1}+\dfrac{1}{\sqrt{a-1}}\) \(=\sqrt{a-1}+\dfrac{1}{4\sqrt{a-1}}+\dfrac{3}{4\sqrt{a-1}}\) \(\ge2\sqrt{\sqrt{a-1}.\dfrac{1}{4\sqrt{a-1}}}+\dfrac{3}{4\sqrt{a-1}}\) \(=1+\dfrac{3}{4\sqrt{a-1}}\).

Lập 2 BĐT tương tự rồi cộng vế theo vế, ta có

\(VT\ge3+\dfrac{3}{4}\left(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\right)\)

\(\ge3+\dfrac{3}{4}.\dfrac{9}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\) 

\(\ge3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}\) \(=\dfrac{15}{2}\)

ĐTXR \(\Leftrightarrow a=b=c=\dfrac{5}{4}\). Ta có đpcm

18 tháng 4 2023

Có \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}+\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}-\left(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\right)\ge6\) (1)

Ta chứng minh (1) đúng 

Áp dụng bất đẳng thức Schwarz : 

\(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{\left(1+1+1\right)^2}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\ge\dfrac{9}{\dfrac{3}{2}}=6\)Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{a-1}=\sqrt{b-1}=\sqrt{c-1}\\\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}=\dfrac{3}{2}\end{matrix}\right.\) 

\(\Leftrightarrow a=b=c=\dfrac{5}{4}\)(tm) 

 

NV
21 tháng 3 2022

Đẳng thức quen thuộc: \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\) và tương tự cho các mẫu số còn lại

Ta có:

\(\sum\dfrac{1}{a^2+1}=\sum\dfrac{1}{\left(a+b\right)\left(a+c\right)}=\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Mặt khác:

\(2\left(ab+bc+ca\right)\left(a+b+c\right)=\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\left(a+b+c\right)\)

\(\ge\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\) (Bunhiacopxki)

\(\Rightarrow\sum\dfrac{1}{a^2+1}\ge\dfrac{\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\left(\dfrac{a}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\right)^2\)

\(=\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^2\)

Do đó ta chỉ cần chứng minh:

\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{3}{2}\)

Đúng theo AM-GM:

\(\sum\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

29 tháng 9 2017

\(A=\sum\sqrt{\dfrac{1}{1+a^2}}=\sum\sqrt{\dfrac{bc}{bc+a.abc}}=\sum\sqrt{\dfrac{bc}{bc+a\left(a+b+c\right)}}=\sum\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)=\dfrac{3}{2}\)