K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

Dùng bđt Cosy nha mn!

1 tháng 8 2019

#)Giải :

Đặt \(\hept{\begin{cases}\frac{ab}{c}=x\\\frac{bc}{a}=y\\\frac{ca}{b}=z\end{cases}\Rightarrow\hept{\begin{cases}a^2=xz\\b^2=xy\\c^2=yz\end{cases}}\Rightarrow xy+yz+xz=3}\)

Theo hệ quả của BĐT Cauchy :

\(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge3\left(xy+yz+xz\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)=9\)

\(\Rightarrow x+y+z\ge3\) hay \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge3\left(đpcm\right)\)

Dấu ''='' xảy ra \(\Leftrightarrow\) a = b = c = 1

2 tháng 6 2019

Anh làm cách cosi

\(VT^2=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(b^2+a^2+c^2\right)\)

Ta có \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2b^2\)

       \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2c^2\)=>     \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)

         \(\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge2c^2\)

=> \(VT^2\ge3\left(a^2+b^2+c^2\right)=9\)

=> \(VT\ge3\)

Dấu bằng xảy ra khi a=b=c1

2 tháng 6 2019

xD

Có: \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge3\)(1)

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(a^2+b^2+c^2\right)\ge9\)

\(\Leftrightarrow\frac{\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3a^2b^2c^2}{a^2b^2c^2}\ge0\)

Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)

\(\left(1\right)\Leftrightarrow\frac{x^3+y^3+z^3-3xyz}{\left(abc\right)^2}\ge0\)

\(\Leftrightarrow\frac{\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]}{\left(abc\right)^2}\ge0\)(đúng)

Vậy ........... dấu = xảy ra khi và chỉ khi x=y=z hay a=b=c=1

5 tháng 10 2017

Xét \(P=\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)^2\)

\(P=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(a^2+b^2+c^2\right)=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+6\)

Áp dụng BĐT Cauchy, ta có:

\(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2\sqrt{b^4}=2b^2\)

Tương tự, ta có: \(P=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+6\ge a^2+b^2+c^2+6=9\)

\(\Rightarrow P\ge3\)

16 tháng 5 2019

1 ) (a+b+c)^2 >= 3(ab+bc+ac)

<=> a^2 + b^2 + c^2 >= ab + bc + ac

<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ac

<=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + a^2 - 2ac + c^2 >= 0 

<=> (a - b)^2 + (b-c)^2 + (a-c)^2 >= 0 

( luôn đúng với mọi a ; b ; c )

( đpcm )

2 ) P =  \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}\)

AD BĐT Cô - si và BĐT phụ đã cmt ở trên  ta có : \(P\ge2.\frac{1}{3}+\frac{8.3.\left(ab+bc+ac\right)}{9\left(ab+bc+ac\right)}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu " = " xảy ra <=> a = b = c 

16 tháng 5 2019

Khôi Bùi : theo e ý 2 có thể đơn giản hóa vấn đề bằng cách đặt ẩn phụ

đặt \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}=t\left(t\ge3\right)\)

\(\Rightarrow P=t+\frac{1}{t}=\frac{t}{9}+\frac{1}{t}+\frac{8}{9}t\)

Áp dụng BĐT AM-GM ta có:

\(P\ge2.\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}t\ge\frac{2.1}{3}+\frac{8}{9}.3=\frac{10}{3}\)

Dấu " = " xảy ra <=> a=b

4 tháng 9 2020

Biến đổi tương đương bất đẳng thức và chú ý đến \(x+y+z=1\)Ta được 

\(\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\) ( trừ cả hai vế với (x+y+z)^2 )

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow\frac{\left(x-z\right)^2}{z}+\frac{\left(y-x\right)^2}{x}+\frac{\left(z-y\right)^2}{y}\ge\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow\left(x-y\right)^2\left(\frac{1}{x}-1\right)+\left(y-z\right)^2\left(\frac{1}{y}-1\right)+\left(z-x\right)^2\left(\frac{1}{z}-1\right)\ge0\)

Vì x + y + z = 1 nên 1/x; 1/y; 1/z > 1. Do đó bđt cuối cùng luôn đúng 

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=3\)

4 tháng 9 2020

Cách trâu bò :

Ta có : 

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{â^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Leftrightarrow\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right):\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge3\)

\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge3\)

+) \(ab+ac+bc=abc\Leftrightarrow a+b+c=6-\left(ab+bc+ca\right)\)

\(\Leftrightarrow\hept{\begin{cases}6-\left(ab+bc+ca\right)>0\\\left(a+b+c\right)^2=\left[6-\left(ab+bc+ca\right)\right]^2\end{cases}}\)

Còn lại phân tích nốt ra rùi áp dụng bđt cauchy là ra . ( Mình cũng ko chắc biến đổi đoạn đầu đúng chưa , có gì bạn xem lại giùm mình sai bỏ qua )

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

17 tháng 5 2019

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Dấu " = " xảy ra <=> a=b=c=1

Có: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\Leftrightarrow a+b+c\ge3\)( bạn tự c/m nhé )

Dấu " = " xảy ra <=> a=b=c

Áp dụng BĐT Cauchy-schwarz ta có:

\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}\ge\frac{\left(a^2+b^2+c^2\right)^2}{4\left(a+b+c\right)}\ge\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{4\left(a+b+c\right)}=\frac{\left(a+b+c\right)^3}{36}\ge\frac{27}{36}=\frac{3}{4}\)

Dấu " = " xảy ra <=> a=b=c=1 ( bạn tự giải rõ ra nhé )