K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow ab+bc+ca=1\)

\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)\(=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)

\(=\left(a+c\right)\left(b+a\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

12 tháng 1 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{abc}\left(QĐ\right)\Leftrightarrow ac+bc+ab=1\)

\(\Rightarrow1+a^2=bc+ab+ac+a^2=b\left(a+c\right)+a\left(a+c\right)=\left(a+c\right)\left(a+b\right)\)

Tương tự: \(1+b^2=\left(a+b\right)\left(b+c\right)\)\(1+c^2=\left(a+c\right)\left(b+c\right)\)

Nhân vế với vế ta được: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\)

mà \(\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\)là số chính phương => đpcm

5 tháng 4 2017

Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)

5 tháng 4 2017

1) Đặt n+1 = k^2

2n + 1 = m^2

Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ 

Đặt m = 2t+1

=> 2n+1 = m^2 = (2t+1)^2

=> 2n+1 = 41^2 + 4t + 1

=> n = 2t(t+1)

=> n là số chẵn

=> n+1 là số lẻ

=> k lẻ 

+) Vì k^2 = n+1

=> n = (k-1)(k+1)

Vì k -1 và k+1 là 2 số chẵn liên tiếp

=> (k+1)(k-1) chia hết cho * 

=> n chia hết cho 8

+) k^2 + m^2 = 3a + 2

=> k^2 và m^2 chia 3 dư 1

=> m^2 - k^2 chia hết cho 3

m^2 - k^2 = a

=> a chia hết cho 3

Mà 3 và 8 là 2 số nguyên tố cùng nhau

=> a chia hết cho 24

9 tháng 5 2017

Câu 2/

\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)

Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)

Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.

PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.

9 tháng 5 2017

tks bn nhé, bn giúp mk câu 1 được ko

NV
11 tháng 2 2020

Với \(a=b=c=10\) hiển nhiên BĐT sai

Thôi rồi viết thiếu đề bài

abcd=1 nha các bạn ahihi

27 tháng 2 2017

\(abc=1\Rightarrow\left(abc\right)^2=a^2b^2c^2=1\Rightarrow a^2=\frac{1}{b^2c^2}\Rightarrow\frac{1}{a^3\left(b+c\right)}=\frac{b^2c^2}{a\left(b+c\right)}=\frac{\left(bc\right)^2}{ab+ac}\)

Chứng minh tương tự ta có:  \(\frac{1}{b^3\left(c+a\right)}=\frac{\left(ca\right)^2}{bc+ba};\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{ca+cb}\)

=> \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\)

Áp dụng bđt Cauchy-Schwarz dạng Engel: \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{\left(ab+bc+ca\right)^2}{bc+ca+ab+ca+ab+bc}=\frac{ab+bc+ca}{2}\)

Tiếp tục áp dụng bđt Cauchy với 3 số dương ta được: \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3\sqrt[3]{1}}{2}=\frac{3}{2}\)

=> \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{ab+bc+ca}{2}\ge\frac{3}{2}\)

27 tháng 2 2017

Dấu "=" xảy ra khi a=b=c=1

23 tháng 11 2020

1)

Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c

24 tháng 11 2020

2)

\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)

Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)

16 tháng 4 2019

\(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\)

\(=\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

mà \(\frac{a}{b}+\frac{b}{a}\ge2\)(dễ chứng minh) 

chứng minh tương tự ta có

\(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\)\(\ge\)6

\(\left(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\right)^2\ge6^2=36\)(2)    (a>0; b>0; c>0)

tiếp theo chứng minh

\(36\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(18\ge2\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(18a^2+18b^2+18c^2\ge2ab+2bc+2ca\)

\(16\left(a^2+b^2+c^2\right)+\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(16\left(a^2+b^2+c^2\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)   (bất đẳng thức luôn đúng )

suy ra  bất đẳng thức

\(36\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)luôn đúng  (2)

từ (1) và (2) suy ra

\(\left(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\right)^2\ge\text{​​}\text{​​36}\ge\)\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

12 tháng 8 2019

ban xem lai de bai di

12 tháng 8 2019

Đề bài hoàn toàn đúng