K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

\(\text{Đặt }a=x^3;b=y^3;c=z^3\)

\(\Rightarrow abc=\left(xyz\right)^3=1\Rightarrow xyz=1\)

Đề trở thành :Cho x;y;z > 0 ; xyz = 1 ; Chứng minh \(\frac{1}{1+x^3+y^3}+\frac{1}{1+y^3+z^3}+\frac{1}{1+x^3+z^3}\le1\)

Áp dụng AM - GM ta có :

 \(x^2y+xy^2\le\frac{x^3+x^3+y^3}{3}+\frac{x^3+y^3+y^3}{3}=\frac{3\left(x^3+y^3\right)}{3}=x^3+y^3\)

\(\Rightarrow\frac{1}{1+x^3+y^3}\le\frac{1}{1+x^2y+xy^2}=\frac{1}{xyz+x^2y+xy^2}=\frac{1}{xy\left(x+y+z\right)}\text{ }\left(1\right)\)

Cm tươnng tự \(\hept{\begin{cases}\frac{1}{1+y^3+z^3}\le\frac{1}{yz\left(x+y+z\right)}\text{ }\left(2\right)\\\frac{1}{1+x^3+z^3}\le\frac{1}{xz\left(x+y+z\right)}\text{ }\left(3\right)\end{cases}}\)

Cộng vế với vế của (1);(2);(3) ta có :

\(\frac{1}{1+x^3+y^3}+\frac{1}{1+y^3+z^3}+\frac{1}{1+x^3+z^3}\le\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)

Hay \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+a+c}\le1\)(đpcm)

20 tháng 2 2019

1

20 tháng 2 2019

con

27 tháng 11 2017

ai trả lời hộ tui cái sắp thi r

20 tháng 7 2016

Ta có : 

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}}\)

                                   \(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{a+b+c}{abc}\right)}\)

                                   \(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left[\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right]\left(ĐPCM\right)\)

[ ] là giá trị tuyệt đối đấy.

ủng hộ nhé bạn!

Câu 1: Cho \(a,b,c0\)và \(a+b+c=3\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).Câu 2: Cho \(a,b,c,d0\)và \(a+b+c+d=4\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).Câu 3: Cho \(a,b,c,d0\). Chứng minh rằng:\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).Câu 4: Cho \(a,b,c,d0\). Chứng minh...
Đọc tiếp

Câu 1Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).

Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).

Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).

Câu 4: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\ge\frac{a+b+c+d}{3}\).

Câu 5: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\).

Câu 6: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng: 

\(\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\ge1\).

Câu 7: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Câu 8: Cho \(a_1,a_2,...,a_{n-1},a_n>0\)và \(a_1+a_2+...+a_{n-1}+a_n=n\)với \(n\)nguyên dương. Chứng minh:

\(\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_{n-1}+1}+\frac{1}{a_n+1}\ge\frac{n}{2}\).

 

 

0
17 tháng 11 2017

làm xong rồi thì please_sign

áp dụng bđt huyền thoại \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\) =\(\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\) 

mà \(\left(ab+bc+ac\right)^2\ge3abc\left(a+b+c\right)\) (tụ cm nhé )

\(\Rightarrow\ge\frac{\left(a+b+c^2\right)}{\frac{\left(ab+bc+ac\right)^2}{3}}=\frac{3\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)}{\left(ab+bc+ac\right)^2\left(a^2+b^2+c^2\right)}\)

m,à \(\left(ab+bc+ac\right)^2\left(a^2+b^2+c^2\right)\le\frac{\left(a^2+b^2+c^2+ab+bc+ac+ab+bc+ac\right)^3}{3^3}\)

   =\(\frac{\left(\left(a+b+c\right)^2\right)^3}{27}=27\)

\(\Rightarrow vt\ge\frac{27\left(a^2+b^2+c^2\right)}{27}=a^2+b^2+c^2\)

dau = khi a=b=c=1

17 tháng 11 2017

hay quá bạn ơi

17 tháng 10 2018

Ta chứng minh:

\(\frac{1}{1-3a}\ge256a^3\)

\(\Leftrightarrow\left(4x-1\right)^2\left(48x^2+8x+1\right)\ge0\)đúng

\(\Rightarrow VT\ge256a^3+256b^3+256c^3=\frac{256.3}{64}=12\) 

NV
19 tháng 6 2019

BĐT cần chứng minh tương đương:

\(\Leftrightarrow\frac{2}{2+a}+\frac{2}{2+b}+\frac{2}{2+c}\le2\)

\(\Leftrightarrow\frac{2}{2+a}-1+\frac{2}{2+b}-1+\frac{2}{2+c}-1\le2-3\)

\(\Leftrightarrow\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge1\) (1)

Ta cần chứng minh (1)

Do \(abc=1\) nên tồn tại x;y;z sao cho: \(\left(a;b;c\right)=\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)

\(VT=\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}=\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}\)

\(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

20 tháng 6 2019

Giải thích giùm em từ dòng 4 xuống dòng 7 anh biến đổi vế trái như thế nào vậy ạ ?

18 tháng 12 2019

\(VT=\frac{\left(\sqrt[3]{abc}\right)^2}{2abc}+\Sigma\frac{a^2}{a^2\left(b+c\right)}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\Sigma a^2\left(b+c\right)+2abc}=\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

NV
21 tháng 6 2019

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\) \(\Rightarrow xyz=1\)

Ta có BĐT quen thuộc: \(x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow P=\sum\frac{xyz}{x^3+y^3+xyz}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)

\("="\Leftrightarrow a=b=c=1\)

21 tháng 6 2019

Ai có cách nào khác với anh Nguyễn Việt Lâm không mọi người ?

10 tháng 11 2018

mình ghi nhầm cái số 1 nhỏ nha
mn nếu giải thì bỏ cái số đó đi

10 tháng 11 2018

+ ta có a,b,c thuộc [0,1] 
=> b^2 <= b và c^3 <= c 
=> a + b^2 + c^3 - ab - bc - ca <= a + b + c - (ab + bc + ca) 
+ mặt # a , b , c thuộc [0,1] 
=> (1 - a)(1 - b)(1 - c) >=0 
<> 1- a - b - c + ab + bc + ca - abc >=0 
<> a + b + c - (ab + bc + ca) <= 1 - abc 
=> a + b + c - (ab + bc + ca) <=1 (abc >= 0)