K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

Sửa \(\le\) thành \(\ge\) nha bạn

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

Ta có \(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Tương tự: \(\left\{{}\begin{matrix}\dfrac{b^2}{b+ca}=\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}\\\dfrac{c^2}{c+ba}=\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\end{matrix}\right.\)

Áp dụng BĐT cosi:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3}{4}a\)

\(\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3}{4}b\)

\(\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{c^3}{64}}=\dfrac{3}{4}c\)

Cộng VTV:

\(\Leftrightarrow VT+\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\\ \Leftrightarrow VT\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{2\left(a+b+c\right)}{8}\\ \Leftrightarrow VT\ge\dfrac{a+b+c}{4}\)

Dấu \("="\Leftrightarrow a=b=c=3\)

15 tháng 3 2022

:v

15 tháng 3 2022

gie

NV
18 tháng 9 2021

\(\dfrac{1}{\sqrt{a^3+1}}=\dfrac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\ge\dfrac{2}{a+1+a^2-a+1}=\dfrac{2}{a^2+2}\)

\(\Rightarrow VT\ge\dfrac{2}{a^2+2}+\dfrac{2}{b^2+2}+\dfrac{2}{c^2+2}\)

Do \(abc=8\Rightarrow a^2b^2c^2=64\) , tồn tại các số thực dương x;y;z sao cho:

\(\left(a^2;b^2;c^2\right)=\left(\dfrac{4x}{y};\dfrac{4y}{z};\dfrac{4z}{x}\right)\)

\(\Rightarrow VT\ge\dfrac{2}{\dfrac{4x}{y}+2}+\dfrac{2}{\dfrac{4y}{z}+2}+\dfrac{2}{\dfrac{4z}{x}+2}=\dfrac{y}{2x+y}+\dfrac{z}{2y+z}+\dfrac{x}{2z+x}\)

\(VT\ge\dfrac{x^2}{x^2+2xz}+\dfrac{y^2}{y^2+2xy}+\dfrac{z^2}{z^2+2yz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\) (đpcm)

18 tháng 9 2021

thầy ơi, sao chỗ Do abc = 8 ⇒ a2b2c= 64 lại suy ra các số thực dương x;y;z tồn tại được ạ? 

AH
Akai Haruma
Giáo viên
3 tháng 2

Lời giải:
$\text{VT}=\frac{a(a+b+c)+bc}{b+c}+\frac{b(a+b+c)+ac}{a+c}+\frac{c(a+b+c)+ab}{a+b}$
$=\frac{(a+b)(a+c)}{b+c}+\frac{(b+a)(b+c)}{a+c}+\frac{(c+a)(c+b)}{a+b}$

Áp dụng BĐT AM-GM:

$\frac{(a+b)(a+c)}{b+c}+\frac{(b+a)(b+c)}{a+c}\geq 2\sqrt{(a+b)^2}=2(a+b)$

$\frac{(b+c)(b+a)}{a+c}+\frac{(c+a)(c+b)}{a+b}\geq 2\sqrt{(b+c)^2}=2(b+c)$

$\frac{(a+b)(a+c)}{b+c}+\frac{(c+a)(c+b)}{a+b}\geq 2\sqrt{(c+a)^2}=2(a+c)$

Cộng các BĐT trên theo vế và thu gọn:

$\text{VT}\geq 2(a+b+c)=2$

Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

4 tháng 6 2018

\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)

Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*

16 tháng 4 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wow, chắc xu học lớp 9