K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

23 tháng 5 2017

\(VT=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\)

Tượng tự ta có \(\hept{\begin{cases}\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{a+b}}{2}\end{cases}}\)

\(\Rightarrow VT\le\frac{\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{c}{a+c}+\frac{a}{c+a}\right)+\left(\frac{c}{b+c}+\frac{b}{c+b}\right)}{2}\)

\(\Rightarrow VT\le\frac{\frac{a+b}{a+b}+\frac{c+a}{c+a}+\frac{b+c}{b+c}}{2}=\frac{3}{2}\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

23 tháng 5 2017

cauchy - schwarz là bđt Cauchy à bạn

13 tháng 2 2018

dự đoán của mouri kogoro

a=b=c=1

\(\frac{1}{a^2+1}+\frac{\left(a^2+1\right)}{4}\ge2\sqrt{\frac{\left(a^2+1\right)}{\left(a^2+1\right)4}}=1.\)

\(\frac{1}{b^2+1}+\frac{\left(B^2+1\right)}{4}\ge1\)

\(\frac{1}{c^2+1}+\frac{\left(c^2+1\right)}{4}\ge1\)

\(VT+\frac{1}{4}\left(a^2+b^2+c^2\right)+\frac{3}{4}\ge3\)

\(a^2+b^2+c^2\ge ab+bc+ca\left(cosi\right)\)

\(VT+\frac{3}{4}+\frac{3}{4}\ge3\)

\(VT\ge3-\frac{6}{4}=\frac{12-6}{4}=\frac{6}{4}=\frac{3}{2}\)

dấu = xảy ra khi a=b=c=1

12 tháng 3 2018

mình sắp tốt nghiệp cấp 3 rồi bạn:)

22 tháng 12 2016

(Đề lừa người quá!)

\(c+ab=\left(a+b+c\right)c+ab=ab+bc+ca+c^2=\left(b+c\right)\left(c+a\right)\).

Biến đổi tương tự các tử số ta được BĐT: \(\frac{\left(b+c\right)\left(c+a\right)}{a+b}+\frac{\left(c+a\right)\left(a+b\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{c+a}\ge2\).

Đặt \(x=a+b,y=b+c,z=c+a\). Ta có \(x+y+z=2\)

Ta cần CM: \(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge2\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge2xyz\)

Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\) ta có \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=2xyz\)

Bài toán được chứng minh.

16 tháng 4 2019

Bạn Trần Quốc Đạt Giỏi hơn anh luôn ấy nha

nói thiệt chớ anh nhìn vào cũng loạn mắt lam ko nổi đấy nha

anh k cho Đạt 3 k


 

9 tháng 4 2017

Ta có: 

\(\frac{a}{\sqrt{1+a^2}}=\frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Sau đó Cauchy.... 

Bài này quá nhiều người đăng đến ngán r`, bn quay lại tìm hoặc làm nốt nhéiiiiiiiiiiiiiiiii

17 tháng 6 2019

Ta có:\(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a\left(a+b\right)+c\left(a+b\right)}}\)

\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) (Áp dụng BĐT AM-GM)

Tương tự với hai BĐT còn lại và cộng theo vế ta thu được đpcm.

15 tháng 9 2020

Ta dễ có:\(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)

Một cách tương tự \(\frac{1}{b^2+1}\ge1-\frac{b}{2};\frac{1}{c^2+1}\ge1-\frac{c}{2}\)

Khi đó: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge3-\frac{a+b+c}{2}\)

Cần chứng minh: \(3-\frac{a+b+c}{2}\ge\frac{3}{2}\Leftrightarrow a+b+c\le3\)

Hình như có gì đó sai sai @@

15 tháng 9 2020

Lời giải kia sai rồi :V Làm cách khác:

Ta có:\(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\)

Tương tự rồi ta được:

\(LHS=3-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)\)

Bất đẳng thức cần chứng minh tương đương với: 

\(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{a^2}{3a^2+3}+\frac{b^2}{3b^2+3}+\frac{c^2}{3c^2+3}\le\frac{1}{2}\)

Ta dễ có được:

\(\frac{4a^2}{3a^2+3}=\frac{4a^2}{3a^2+ab+bc+ca}=\frac{\left(a+a\right)^2}{a\left(a+b+c\right)+2a^2+bc}\le\frac{a^2}{a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\)

Tương tự:

\(\frac{4b^2}{3b^2+3}\le\frac{b^2}{b\left(a+b+c\right)}+\frac{b^2}{2b^2+ca};\frac{4c^2}{3c^2+3}\le\frac{c^2}{c\left(a+b+c\right)}+\frac{c^2}{2c^2+ab}\)

\(\Rightarrow LHS\le\frac{1}{4}\left(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}+\Sigma\frac{a^2}{2a^2+bc}\right)=\frac{1}{4}\left(1+\Sigma\frac{a^2}{2a^2+bc}\right)\)

Một cách khác ta dễ có được: \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

Done !