K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2019

Vì \(0\le a,b,c\le2\)nên:

\(abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)

\(\Leftrightarrow abc+2bc-abc+2ac-4c+2ab-4b-4a+8\ge0\)

\(\Leftrightarrow2bc+2ac+2ab-4\left(a+b+c\right)+8\ge0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)-12+8\ge0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)\ge4\)

Do đó: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\le3^2-4=5\)

(Dấu "="\(\Leftrightarrow\)(a,b,c) là các hoán vị của (0,1,2))

29 tháng 11 2019

Áp dụng BĐT Svac - xơ:

\(\frac{1}{a^2+2ab}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)\(=\frac{1^2}{a^2+2ab}+\frac{1^2}{b^2+2ac}+\frac{1^2}{c^2+2ab}\)

\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\frac{9}{\left(a+b+c\right)^2}\ge9\)(Vì \(a+b+c\le1\))

(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))

26 tháng 7 2020

Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

=> \(a^2-2ab+b^2+b^2-2ac+c^2+c^2-2ac+a^2\ge0\)

=> \(2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2bc\)

=> \(3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2bc\)

=> \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=100\)

=> \(a^2+b^2+c^2\ge\frac{100}{3}\)

Vậy ....

15 tháng 1 2018

Tìm Min thì còn tìm dc chứ Tìm max khó lắm ::::V

2 tháng 3 2018

ko hiểu pain nói j quên đây lp 8

30 tháng 3 2022

a) Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" \(\Leftrightarrow a=b=c=2\)

30 tháng 3 2022

b) Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c=6\)

Dấu "=" \(\Leftrightarrow a=b=c=2\)

AH
Akai Haruma
Giáo viên
30 tháng 3 2022

Lời giải:
a. Áp dụng BĐT Cô-si:

$\frac{1}{a}+\frac{a}{4}\geq 1$

$\frac{1}{b}+\frac{b}{4}\geq 1$

$\frac{1}{c}+\frac{c}{4}\geq 1$

Cộng theo vế:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a+b+c}{4}\geq 3$

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{6}{4}\geq 3$

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{3}{2}$ (đpcm) 

Dấu "=" xảy ra khi $a=b=c=2$
b.

Áp dụng BĐT Cô-si:

$\frac{a^2}{c}+c\geq 2a$

$\frac{b^2}{a}+a\geq 2b$

$\frac{c^2}{b}+b\geq 2c$

$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}+(c+a+b)\geq 2(a+b+c)$

$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\geq a+b+c=6$ (đpcm) 

Dấu "=" xảy ra khi $a=b=c=2$