K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

2/ Mình sẽ chứng minh bằng phản chứng :)

Giả sử rằng trong 100 số đó không tồn tại hai số nào bằng nhau, khi đó không mất tính tổng quát, ta gọi \(a_i< a_{i+1}....\) với \(i=\overline{1,100}\) 

Bằng cách giả sử như vậy, ta có thể đặt \(a_i\ge i\)

Ta có : \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}\ge\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)

Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..+\frac{1}{\sqrt{100}}\)

Ta chứng minh bài toán phụ : Với n là số tự nhiên lớn hơn 0 thì \(\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Thật vậy : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Áp dụng với n = 1,2,...,100 được : 

\(A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)

\(=2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-1\right)=18\)

Mình làm đến đây nhưng không biết vì sao nó lại chưa chặt, có ai có cách khác không?

11 tháng 12 2016

Giả sử a1, a2, ..., a100 là 100 số khác nhau thì 

\(P=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)

Ta chứng minh với mọi n ≥ 2 thì 

\(\frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Ta có: \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}\)

\(=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Áp dụng vào bài toán ta được

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)

\(=1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(=1+2\left(\sqrt{100}-1\right)=19\)

\(\Rightarrow P< 19\)

Vậy nếu như a1, a2, ..., a100 là 100 số tự nhiên khác nhau thì tổng P luôn luôn < 19.

Nên để tổng P = 19 thì phải có ít nhất 2 trong 100 số đó phải bằng nhau

8 tháng 2 2020

Giả sử trong 100 số đó k có 2 số nào bằng nhau thì

\(A=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)

+ Ta có : \(\frac{1}{\sqrt{n}}=2.\frac{1}{\sqrt{n}+\sqrt{n}}< 2.\frac{n-\left(n-1\right)}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Do đó: \(A\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(\Rightarrow A< 1+2\left(\sqrt{100}-1\right)\Rightarrow A< 19\) ( trái vs giả thiết )

=> điều giả sử là sai => đpcm

a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)

Để P nguyên dương thì x-1 thuộc {1;4;2}

=>x thuộc {2;5;3}

b: x+y+z=0

=>x=-y-z; y=-x-z; z=-x-y

\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)

\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)

\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)

\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)

\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)

em ko bieets hu hu

11 tháng 6 2019

#)Giải :

a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)

\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)