K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

Giả thiết đề bài phải cho \(x^2+y^2+z^2\le3\) mới đúng.

Đặt \(m=x+y+z\)  thì \(m^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\le3+2\left(xy+yz+zx\right)\)

                                            \(\le3+2\left(x^2+y^2+z^2\right)\le3+3.2=9\)

\(\Rightarrow m^2\le9\Rightarrow-3\le m\le3\) (1) 

Lại có ; \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow xy+yz+zx\le\frac{m^2}{3}\le\frac{9}{3}=3\) (2)

Từ (1) và (2) suy ra \(x+y+z+xy+yz+zx\le6\) (đpcm)

28 tháng 9 2018

\(xy+yz+zx=xyz\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\) thì

\(\hept{\begin{cases}a+b+c=1\\P=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{1}{16}\end{cases}}\)

Ta co:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{64}+\frac{1+c}{64}\ge\frac{3a}{16}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{16}-\frac{b}{64}-\frac{c}{64}-\frac{1}{32}\)

Từ đây ta co:

\(P\ge\left(a+b+c\right)\left(\frac{3}{16}-\frac{1}{64}-\frac{1}{64}\right)-\frac{3}{32}=\frac{1}{16}\)

21 tháng 10 2018

a. Ta có : x - y = 0 \(\Rightarrow\)x = y

Ta có : xy = xx ( vì x = y) = x^2

Mà x^2 \(\ge\)0 với mọi x nên xy \(\ge\)0 với mọi x.

21 tháng 10 2018

a)  Ta có x-y=0 => x=y 

      Ta có xy=x.x=x> 0   (dấu = <=> x=y=0)

  b)  x-y+z=0 => x=y-z.Theo kết quả câu a ta có: x(y-z) > 0 => xy-xz > 0  (1)

      Tương tự: x-y+z=0 => y=x+z => y(x+z) > 0 => xy+yz > 0      (2)

                       x-y+z=0 => z=y-x => z(y-x) > 0 => zy-zx > 0        (3)

     Cộng từng vế của bất đẳng thức (1),(2),(3) ta đc 2(xy+yz-zx) > 0

     Do đó xy+yz-zx > 0  (dấu = <=> x=y=z=0)

  Good luck

    

   

khó quá nguyen van hung

22 tháng 6 2019

Ta chứng minh \(\frac{x^4+y^4}{x^2+y^2}\ge\frac{\frac{\left(x^2+y^2\right)^2}{2}}{x^2+y^2}=\frac{x^2+y^2}{2}\)

Tương tự và cộng lại

\(\Rightarrow VT\ge x^2+y^2+z^2\ge xy+xz+yz=3\)

22 tháng 6 2019

chứng minh kiểu j vậy bạn ? , Chỉ mình rõ hơn được không ? 

12 tháng 12 2019

Giả sử z = min{x,y,z} \(\Rightarrow4=x+y+z+xyz\ge z^3+3z\Leftrightarrow\left(z-1\right)\left(z^2+z+4\right)\le0\Rightarrow z\le1\)(*)

Chọn t thỏa mãn \(\hept{\begin{cases}x+y+z+xyz=2t+z+t^2z\\2t+z+t^2z=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y-2t=\left(t^2-xy\right)z\left(1\right)\\2t+z+t^2z=4\left(2\right)\end{cases}}\)

Giả sử \(t^2< xy\Rightarrow2t>x+y\ge2\sqrt{xy}\Rightarrow t^2>xy\) (mâu thuẫn với giả sử)

Vậy \(t^2\ge xy\Rightarrow x+y\ge2t\). Đặt  P = f(a;b;c). Xét hiệu:

\(f\left(x;y;z\right)-f\left(t;t;z\right)=z\left(x+y-2t\right)-\left(t^2-xy\right)\)

\(=z^2\left(t^2-xy\right)-\left(t^2-xy\right)=\left(z^2-1\right)\left(t^2-xy\right)\le0\)

Vậy: \(P=f\left(x;y;z\right)\le f\left(t;t;z\right)=t^2+2tz\)

 Từ \(\left(2\right)\Rightarrow z=\frac{\left(4-2t\right)}{t^2+1}.\text{Do }z\ge0\Rightarrow4-2t\ge0\Rightarrow t\le2\)

Mặc khác do (*): \(\Rightarrow4=2t+z+t^2z\le t^2+2t+1\Rightarrow\left(t+3\right)\left(t-1\right)\ge0\Rightarrow2\ge t\ge1\)

Vậy ta tìm max của: \(f\left(t;t;z\right)=f\left(t;t;\frac{4-2t}{t^2+1}\right)=t^2+\frac{2t\left(4-2t\right)}{t^2+1}\)

Dễ thấy hàm số này đồng biến suy ra \(f\left(t;t;\frac{4-2t}{t^2+1}\right)\) đạt max khi t = 2. Khi đó \(P=f\left(a;b;c\right)\le f\left(t;t;\frac{4-2t}{t^2+1}\right)\le4\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(2;2;0\right)\) và các hoán vị.

P/s: em hết cách rồi nên đành chơi kiểu này:(

1 tháng 10 2019

\(2\left(x^2+y^2+z^2+xy+yz+xz\right)=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\)

\(=\left(3-x\right)^2+\left(3-y\right)^2+\left(3-z\right)^2\)

\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)

\(=9+x^2+y^2+z^2\)

Dễ dàng CM được \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)

=>\(2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge12\)

=> dpcm

2 tháng 10 2019

Ta có: \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\)

\(=2x^2+2y^2+2z^2+2xy+2yz+2xz\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)\)

\(=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)(1)

Mà \(x+y+z=3\Rightarrow\hept{\begin{cases}x+y=3-z\\y+z=3-x\\x+z=3-y\end{cases}}\)

\(\Rightarrow\left(1\right)=\left(3-z\right)^2+\left(3-x\right)^2+\left(3-y\right)^2\)

\(=9-6z+z^2+9-6x+x^2+9-6y+y^2\)

\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)

\(=9+x^2+y^2+z^2\)

Áp dụng BĐT Cauchy cho 3 số:

\(x^2+y^2+z^2=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{3^2}{3}=3\)

\(\Rightarrow9+x^2+y^2+z^2\ge12\)

hay \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\ge12\)

\(\Leftrightarrow x^2+y^2+z^2+xy+yz+xz\ge6\left(đpcm\right)\)

22 tháng 8 2016

Sử dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\ge3\left(\frac{xy}{z}.\frac{yz}{x}+\frac{yz}{x}.\frac{zx}{y}+\frac{zx}{y}.\frac{xy}{z}\right)=3\left(x^2+y^2+z^2\right)=3\)

\(\Rightarrow\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge\sqrt{3}\)

16 tháng 6 2018
https://i.imgur.com/Godbi3O.jpg