K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow x=2k;y=3k;z=5k\)

\(xy+yz+zx=6k^2+15k^2+10k^2\)

\(\Rightarrow31k^2=31\Rightarrow k^2=1\)\(\Rightarrow k=1\Rightarrow x=2;y=3;z=5\)

30 tháng 10 2018

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xy+yz+xz=31\)

\(\Rightarrow6k^2+15k^2+10k^2=31\)

\(\Rightarrow31k^2=31\)

\(\Rightarrow k=\hept{\begin{cases}-1\\1\end{cases}}\)

Với k = 1 => x = 2;y=3;z=5

Với k = -1=> x=-2;y=-3;z=-5

28 tháng 7 2020

ủa đây là toám lớp 1 hả anh

28 tháng 7 2020

cauchy phần mẫu @@

AH
Akai Haruma
Giáo viên
14 tháng 2 2017

Lời giải:

Để cho đẹp, đổi \((xy,yz,xz)\mapsto (a,b,c)\) suy ra \(a+b+c=1\)

BĐT cần chứng minh tương đương với :

\(A=\frac{1}{a+b+c+a+\frac{bc}{a}}+\frac{1}{a+b+c+b+\frac{ac}{b}}+\frac{1}{a+b+c+c+\frac{ab}{c}}\leq \frac{9}{5}\)

\(\Leftrightarrow A=\frac{a}{2a^2+ab+bc+ac}+\frac{b}{2b^2+ab+bc+ac}+\frac{c}{2c^2+ab+bc+ac}\leq \frac{9}{5}\)

\(\Leftrightarrow A=\sum \frac{a(ab+bc+ca)}{2a^2+ab+bc+ac}\leq \frac{9(ab+bc+ac)}{5}\)

Để ý rằng \(A=\sum \left ( a-\frac{2a^3}{2a^2+ab+bc+ac} \right )=1-\sum \frac{2a^3}{2a^2+ab+bc+ac}\)

Cauchy-Schwarz:

\(\sum \frac{2a^3}{2a^2+ab+bc+ac}=\sum \frac{2a^4}{2a^3+a^2b+abc+a^2c}\geq \frac{2(a^2+b^2+c^2)^2}{2(a^3+b^3+c^3)+ab(a+b)+bc(b+c)+ca(a+c)+3abc}\)

Giờ đặt \(ab+bc+ac=q,abc=r\)

Phân tích:

\(2(a^3+b^3+c^3)+\sum ab(a+b)+3abc=2(a^3+b^3+c^3-3abc)+(a+b+c)(ab+bc+ac)+6abc\)

\(=2(a+b+c)(a^2+b^2+c^2-ab-bc-ac)+ab+bc+ac+6abc\)

\(=2(a^2+b^2+c^2)-(ab+bc+ac)+6abc=2-5q+6r\)

Do đó \(A\leq 1-\frac{2(1-2q)^2}{2-5q+6r}\). Giờ chỉ cần chỉ ra \(1-\frac{2(1-2q)^2}{2-5q+6r}\leq \frac{9q}{5}\Leftrightarrow q(3-5q)+6r(9q-5)\geq 0\)

Theo AM-GM dễ thấy

\(q^2=(ab+bc+ac)^2\geq 3abc(a+b+c)=3r\)

\(1=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow q\leq \frac{1}{3}\)

\(\Rightarrow 9q-5<0\rightarrow 6r(9q-5)\geq 2q^2(9q-5)\) (đổi dấu)

\(\Rightarrow q(3-5q)+6r(9q-5)\geq q(3-5q)+2q^2(9q-5)=q(2q-1)(3q-1)\geq 0\)

BĐT trên hiển nhiên đúng vì \(q\leq \frac{1}{3}<\frac{1}{2}\Rightarrow (2q-1)(3q-1)\geq 0\)

Chứng minh hoàn tất.

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

P/s: Làm BĐT bần cùng lắm mới xài pqr, không ngờ phải xài thật :)

AH
Akai Haruma
Giáo viên
13 tháng 2 2017

Bài này mà đăng vào box toán 8 là không thấy ổn rồi.

Để tối coi coi xem thế nào.

13 tháng 2 2020

Ai giải hộ câu này nhanh đi mà