K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

6 tháng 7 2017

a, b, c dương

Ta có  \(\frac{a^3}{b}+ab\ge2\sqrt{\frac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\)   (1)

Tương tự  \(\frac{b^3}{c}+bc\ge2b^2\)  (2) và  \(\frac{c^3}{a}+ca\ge2c^2\)   (3)

Cộng (1), (2), (3) vế theo vế:  \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)

\(\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)

Đẳng thức xảy ra tại a=b=c

5 tháng 5 2021

Áp dụng bđt AM - GM  cho a,b,c thực dương :

\(\left\{{}\begin{matrix}\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{b^2}=2b\\\dfrac{bc}{a}+\dfrac{ac}{b}\ge2c\\\dfrac{ab}{c}+\dfrac{ac}{b}\ge2a\end{matrix}\right.\)

\(\Leftrightarrow2.\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge\left(a+b+c\right)\)

Dấu "=" ⇔ a = b =c 

5 tháng 5 2021

có cách lớp 8 ko ạ

 

5 tháng 5 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab^2c}{ac}}=2\left|b\right|=2b\)( vì b > 0 )

Tương tự : \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)\(\frac{ab}{c}+\frac{ca}{b}\ge2a\)

Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm

Dấu "=" xảy ra <=> a = b = c 

5 tháng 5 2021

Giả sử ta phải chứng minh:  \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\left(a,b,c>0\right)\).

\(\Leftrightarrow\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)^2\ge\left(a+b+c\right)^2\).

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+\frac{2ab.bc}{ac}+\frac{2bc.ca}{ab}+\frac{2ca.ab}{cb}\ge\)\(a^2+b^2+c^2+2ab+2bc+2ca\).

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2b^2+2c^2+2a^2-a^2-b^2-c^2\ge\)\(2ab+2bc+2ca\).

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+a^2+b^2+c^2\ge2ab+2bc+2ca\left(1\right)\).

Vì \(a,b,c>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(\frac{a^2b^2}{c^2}+c^2\ge2\sqrt{\frac{a^2b^2}{c^2}.c^2}=2ab\left(2\right)\).

Chứng minh tương tự, ta được:

\(\frac{b^2c^2}{a^2}+a^2\ge2bc\left(a,b,c>0\right)\left(2\right)\).

Chứng minh tương tự, ta được:

\(\frac{c^2a^2}{b^2}+b^2\ge2ca\left(4\right)\).

Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:

\(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+a^2+b^2+c^2\ge2ab+2bc+2ca\).

Do đó bất đẳng thức đã được chứng minh.

Dấu bằng xảy ra \(\Leftrightarrow a=b=c>0\).

Vậy \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)với \(a,b,c>0\).

NV
24 tháng 2 2020

a/ Biến đổi tương đương:

\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)

\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)

b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)

Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)

Cộng vế với vế ta có đpcm

6 tháng 10 2019

ta có a+bc=a(a+b+c)+ab=(a+b)(a+c)

tương tự b+ca=(b+c)(a+b)

c+ab=(a+c)(b+c)

ad bđt cô si cho 3 số dương ta có

a^3/(a+b)(a+c)+a+b/8+a+c/8 >=3a/4

tương tự bạn lm tiếp nhé

6 tháng 4 2021

Ta có : \(\hept{\begin{cases}\frac{a^3}{a^2+b^2+ab}=\frac{a^4}{a\left(a^2+b^2+ab\right)}=\frac{a^4}{a^3+ab^2+a^2b}=\frac{a^4}{a^3+ab\left(a+b\right)}\\\frac{b^3}{b^2+c^2+bc}=\frac{b^4}{b\left(b^2+c^2+bc\right)}=\frac{b^4}{b^3+bc^2+b^2c}=\frac{b^4}{b^3+bc\left(b+c\right)}\\\frac{c^3}{c^2+a^2+ca}=\frac{c^4}{c\left(c^2+a^2+ca\right)}=\frac{c^4}{c^3+ca^2+c^2a}=\frac{c^4}{c^3+ca\left(c+a\right)}\end{cases}}\)

Khi đó bất đẳng thức được viết lại thành :

\(\frac{a^4}{a^3+ab\left(a+b\right)}+\frac{b^4}{b^3+bc\left(b+c\right)}+\frac{c^4}{c^3+ca\left(c+a\right)}\ge\frac{a+b+c}{3}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Dễ dàng phân tích \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=> \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

Xét bất đẳng thức phụ : 3( a2 + b2 + c2 ) ≥ ( a + b + c )2

<=> 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ca ≥ 0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )

Khi đó áp dụng vào bài toán ta có : \(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)( đpcm )

Đẳng thức xảy ra <=> a=b=c

6 tháng 4 2021

bài này mới được thầy sửa hồi chiều nè @@

Vì a,b dương => ( a + b ) ( a - b )2 \(\ge\)0 => a3 + b3 \(\ge\)ab ( a + b )

BĐT tương đương với 3a3\(\ge\)2a3 + 2ab ( a + b ) - b3 = 2a3 + 2a2b + 2ab2 - a2b - ab2 - b3 = ( a2 + ab + b3 ) ( 2a - b )

Suy ra : \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)(1)

Chứng minh tương tự ta được : \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b-c}{3}\)(2) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c-a}{3}\)(3)

Từ (1) ; (2) và (3) => \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)(đpcm)

22 tháng 2 2020

https://olm.vn/hoi-dap/detail/82505750499.html

22 tháng 2 2020

Ở mục câu hỏi tương tự có bài đó bạn ơi

9 tháng 2 2017

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow\frac{a^4}{a^3+a^2b+ab^2}+\frac{b^4}{b^3+b^2c+bc^2}+\frac{c^4}{c^3+c^2a+a^2c}\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{a+b+c}{3}\)

Áp dụng bất đẳng thức cộng mẫu số cho vế trái

\(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+a^2c}\)

\(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^3+a^2b+a^2c\right)+\left(b^3+b^2c+ab^2\right)+\left(c^3+c^2a+bc^2\right)}\)

\(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)}\)

\(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

Chứng minh rằng: \(\frac{a^2+b^2+c^2}{a+b+c}\ge\frac{a+b+c}{3}\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

Áp dụng bất đẳng thức Bunhiacopski cho 3 bộ số thực không âm

\(\Rightarrow3\left(a^2+b^2+c^2\right)=\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)( đpcm )

Vậy \(\frac{a^2+b^2+c^2}{a+b+c}\ge\frac{a+b+c}{3}\)

\(\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{a^2+b^2+c^2}{a+b+c}\)

\(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\) ( đpcm )